История возникновения и развития эвм. Поколения ЭВМ: элементная база. История поколений ЭВМ. Перспективы развития компьютерных систем

Подписаться
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:

Одним из первых устройств (V-IV вв. до н.э.), с которых, можно считать, началась история развития компьютеров, была специальная доска, названная впоследствии «абак». Вычисления на ней проводились перемещением костей или камней в углублениях досок из бронзы, камня, слоновой кости и тому подобное. В Греции абак существовал уже в V в. до н.э., у японцев он назывался «серобаян», у китайцев — «суанпань». В Древней Руси для счета применялось устройство, похожее на абак, — «дощаный счет». В XVII веке этот прибор принял вид привычных российских счетов.

Абак (V-IV вв. до н.э.)

Французский математик и философ Блез Паскаль в 1642 г. создал первую машину, получившую в честь своего создателя название — Паскалина. Механическое устройство в виде ящика со многими шестернями кроме сложения выполняла и вычитание. Данные вводились в машину с помощью поворота наборных колесиков, которые отвечали числам от 0 до 9. Ответ появлялся в верхней части металлического корпуса.


Паскалина

В 1673 году Готфрид Вильгельм Лейбниц создал механическое счетное устройство (ступенчатый вычислитель Лейбница — калькулятор Лейбница), которое впервые не только складывало и вычитало, а еще умножало, делило и вычисляло квадратный корень. Впоследствии колесо Лейбница стало прототипом для массовых счетных приборов — арифмометров.


Модель ступенчатого вычислителя Лейбница

Английский математик Чарльз Бэббидж разработал устройство, которое не только выполняло арифметические действия, но и сразу же печатало результаты. В 1832 г. была построена десятикратно уменьшенная модель из двух тысяч латунных деталей, которая весила три тонны, но была способна выполнять арифметические операции с точностью до шестого знака после запятой и вычислять производные второго порядка. Эта вычислительная машина стала прообразом настоящих компьютеров, называлась она дифференциальной машиной.

Дифференциальная машина

Суммирующий аппарат с непрерывной передачей десятков создает российский математик и механик Пафнутий Львович Чебышев. В этом аппарате достигнута автоматизация выполнения всех арифметических действий. В 1881 году была создана приставка к суммирующему аппарату для умножения и деления. Принцип непрерывной передачи десятков широко использовался в различных счетчиках и вычислительных машинах.


Суммирующий аппарат Чебышева

Автоматизированная обработка данных появилась в конце прошлого века в США. Герман Холлерит создал устройство — Табулятор Холлерита — в котором , нанесенная на перфокарты, расшифровывалось электрическим током.

Табулятор Холлерита

В 1936 году молодой ученый из Кембриджа Алан Тьюринг придумал мысленный счетный аппарат-компьютер, который существовал только на бумаге. Его «умная машина» действовала по определенному заданному алгоритму. В зависимости от алгоритма, воображаемая машина могла применяться для самых разнообразных целей. Однако в то время это были чисто теоретические рассуждения и схемы, которые послужили прототипом программируемого компьютера, как вычислительного устройства, которое обрабатывает данные в соответствии с определенной последовательностью команд.

Информационные революции в истории

В истории развития цивилизации произошло несколько информационных революций — преобразований социальных общественных отношений вследствие изменений в области обработки, сохранения и передачи информации.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку цивилизации. Появилась возможность передачи знаний от поколений к поколениям.

Вторая (середина XVI в.) революция вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) революция с открытиями в области электричества, благодаря чему появились телеграф, телефон, радио, устройства, которые позволяют оперативно передавать и накапливать информацию в любом объеме.

Четвертая (с семидесятых годов XX в.) революция связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, системы передачи данных (информационные коммуникации).

Этот период характеризуют три фундаментальные инновации:

  • переход от механических и электрических средств преобразования информации к электронным;
  • миниатюризация всех узлов, устройств, приборов, машин;
  • создание программно-управляемых устройств и процессов.

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые . Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Принципы работы компьютеров Конрада Цузе

Идея о возможности построения автоматизированного счетного аппарата пришла в голову немецкому инженеру Конраду Цузе (Konrad Zuse) и в 1934 г. Цузе сформулировал основные принципы, на которых должны работать будущие компьютеры:

  • двоичная система счисления;
  • использование устройств, работающих по принципу «да / нет» (логические 1 / 0);
  • полностью автоматизированный процесс работы вычислителя;
  • программное управление процессом вычислений;
  • поддержка арифметики с плавающей запятой;
  • использование памяти большой емкости.

Цузе первым в мире определил, что обработка данных начинается с бита (бит он называл «статусом да / нет», а формулы двоичной алгебры — условными суждениями), первым ввел термин «машинное слово» (Word), первым объединил в вычислители арифметические и логические операции, отметив, что «элементарная операция компьютера — проверка двух двоичных чисел на равенство. Результатом будет тоже двоичное число с двумя значениями (равно, не равно)».

Первое поколение — ЭВМ с электронными лампами

Colossus I — первая вычислительная машина на лампах, созданная англичанами в 1943 г., для раскодирования немецких военных шифров; она состояла из 1800 электронных ламп — устройств для хранения информации — и была одним из первых программируемых электронных цифровых компьютеров.

ENIAC — был создан для расчета артиллерийских таблиц баллистики; этот компьютер весил 30 тонн, занимал 1000 квадратных футов и потреблял 130-140 кВт электроэнергии. Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов, и содержались они в шкафах общим объемом около 100 м 3 . ENIAC имел производительность 5000 операций в секунду. Общая стоимость машины составляла $ 750 000. Потребность в потребления электричества — 174 кВт, общее занимаемое пространство — 300 м 2 .


ENIAC — устройство для расчета артиллерийских таблиц баллистики

Еще один представитель 1-го поколения ЭВМ, на который следует обратить внимание, это EDVAC (Electronic Discrete Variable Computer). EDVAC интересен тем, что в нем была сделана попытка записывать программы электронным способом в так называемых «ультразвуковых линиях задержки» с помощью ртутных трубок. В 126 таких линиях было возможно сохранять 1024 строк четырехзначных двоичных чисел. Это была «быстрая» память. В качестве «медленной »памяти предполагалось фиксировать числа и команды на магнитном проводе, однако этот метод оказался ненадежным, и пришлось вернуться к телетайпным лентам. EDVAC работал быстрее своего предшественника, сложение занимало 1 мкс, деление — 3 мкс. Он содержал всего 3,5 тыс. электронных ламп и располагался на 13 м 2 площади.

UNIVAC (Universal Automatic Computer) представлял собой электронное устройство с программами, хранящимися в памяти, которые вводились туда уже не с перфокарт, а с помощью магнитной ленты; это обеспечивало высокую скорость чтения и записи информации, а, следовательно, и более высокое быстродействие машины в целом. Одна лента могла содержать миллион символов, записанных в двоичной форме. Ленты могли хранить и программы, и промежуточные данные.


Представители I-го поколения ЭВМ: 1) Electronic Discrete Variable Computer; 2) Universal Automatic Computer

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом (junction transistor). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м 2 . PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!


Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах («Раздан-2», «Минск — 2», «М-220» и «Днепр») находились еще в стадии разработки.

Третье поколение — малогабаритные ЭВМ на интегральных схемах

В 50-х и 60-х годах сборка электронного оборудования представляла трудоемкий процесс, который замедлялся возрастающей сложностью электронных схем. Так, например, компьютер типа CD1604 (1960 , Control Data Corp.) , содержал около 100 тыс. диодов и 25 тыс. транзисторов.

В 1959 американцы Джек Сент Клэр Килби (фирма Texas Instruments) и Роберт Н. Нойс (фирма Fairchild Semiconductor) независимо друг от друга изобрели интегральную схему (ИС) — совокупность тысяч транзисторов, размещенных на одном кристалле кремния внутри микросхемы.

Производство компьютеров на ИС (микросхемами их стали называть позже) было гораздо дешевле, чем на транзисторах. Благодаря этому многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения различных задач. В эти годы производство компьютеров приобрело промышленные масштабы.

В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах.


Представитель III-го поколения ЭВМ — ЕС-1022

Четвертое поколение — персональные компьютеры на процессорах

Предшественниками IBM PC были Apple II, Radio Shack TRS-80, Atari 400 и 800, Commodore 64 и Commodore PET.

Рождения персональных компьютеров (ПК, PC) с полным основанием связывают с процессорами Intel. Корпорация была основана в середине июня 1968 г. с тех пор Intel превратилась в крупнейшего в мире производителя микропроцессоров с числом сотрудников более 64 тысяч. Целью Intel было создание полупроводниковой памяти и, чтобы выжить, фирма стала брать и сторонние заказы на разработку полупроводниковых устройств.

В 1971 г.. Intel получила заказ на разработку набора из 12 микросхем для программируемых микрокалькуляторов, но инженерам Intel создание 12 специализированных чипов показалось громоздким и неэффективным. Задача сокращения номенклатуры микросхем была решена путем создания «спарки» с полупроводниковой памяти и исполнительного устройства, способного работать по командам, хранящимся в ней. Это был прорыв в философии создания вычислительных средств: универсальное логическое устройство в виде 4-разрядного центрального процессорного устройства i4004, который позже был назван первый микропроцессором. Он представлял собой набор из 4 чипов, в числе которых был один чип, управляемый командами, которые хранились в полупроводниковой внутренней памяти.

Как коммерческая разработка, микрокомпьютер (так тогда называлась микросхема) появился на рынке 11 ноября 1971 под названием 4004: 4 битный, содержащий 2300 транзисторов, тактовая частота 60 кГц, стоимость — $ 200. В 1972 г. компания Intel выпустила восьмибитный микропроцессор 8008, а в 1974 г. — его усовершенствованную версию Intel-8080, которая к концу 70-х годов стала стандартом для микрокомпьютерной индустрии. Уже в 1973 году во Франции появляется первый компьютер на базе процессора 8080 — Micral. По разным причинам этот процессор не имел успеха в Америке (в Советском Союзе он был скопирован и выпускался долгое время под названием 580ВМ80). Тогда же группа инженеров ушла из Intel и образовала фирму Zilog. Наиболее громким ее продуктом является Z80, который имеет расширенный набор команд 8080 и, что обеспечило его коммерческий успех для бытовых приборов, обходился одним напряжением питания 5В. На его основе был создан, в частности, компьютер ZX-Spectrum (иногда его называют по имени создателя — Sinclair), ставший практически прообразом Home PC середины 80-х. В 1981 г. Intel выпускает 16-разрядный процессор 8086 и 8088 — аналог 8086, за исключением внешней 8-битной шины данных (вся периферия тогда была еще 8-битной).

Конкурент Intel, компьютер Apple II отличался тем, что не был вполне законченным аппаратом и оставалась некоторая свобода для доработки непосредственно пользователем — можно было устанавливать дополнительные интерфейсные платы, платы памяти и др. Именно эта особенность, которую впоследствии стали называть «открытой архитектурой», стала его основным преимуществом. Успеху Apple II способствовали еще две новинки, разработаные в 1978 году. Недорогой накопитель на гибких дисках, и первая программа для коммерческих расчетов — электронная таблица VisiCalc.

Большой популярностью в 70-х годах пользовался компьютер Altair-8800, построенный на основе процессора Intel -8080. Хотя возможности Altair были довольно ограничены — оперативная память составляла всего 4 Kb, клавиатура и экран отсутствовали, его появление было встречено с большим энтузиазмом. Он был выпущен на рынок в 1975 году, и в первые месяцы было продано несколько тысяч комплектов машины.


Представители IV -го поколения ЭВМ: а) Micral; б) Apple II

Этот компьютер, разработанный фирмой MITS, продавался по почте в виде набора деталей для самостоятельной сборки. Весь комплект для сборки стоил $ 397, тогда как только один процессор от Intel продавался за $360.

Распространение ПК к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ — фирма IBM в 1979 выпустила IBM PC на базе процессора 8088. Существующее в начале 80-х годов программное обеспечение было ориентировано на обработку текстов и простых электронных таблиц, а сама мысль о том, что «микрокомпьютер» может стать привычным и необходимым устройством на работе и дома, казалась невероятной.

12 августа 1981 года IBM представила Personal Computer (PC), ставший, в сочетании с программным обеспечением от Microsoft, стандартом для всего парка ПК современного мира. Цена модели IBM PC с монохромным дисплеем составила около $3.000, с цветным — $6.000. Конфигурация IBM PC: процессор Intel 8088 с частотой 4,77 МГц и 29 тысячами транзисторов, 64 Кб оперативной памяти, 1 флоппи-дисковод емкостью 160 Кб, — обычный встроенный динамик. В это время запуск приложений и работа с ними были настоящей мукой: из-за отсутствия жесткого диска приходилось все время менять дискеты, не было ни «мыши», ни графического оконного пользовательского интерфейса, ни точного соответствия между изображением на экране и конечным результатом (WYSIWYG). Цветная графика была крайне примитивна, о трехмерной анимации или фотообработке не было и речи, однако история развития персональных компьютеров началась именно с этой модели.

В 1984 году IBM представила еще две новинки. Во-первых, была выпущена модель для домашних пользователей, названная PCjr на базе процессора 8088, котрая была оснащена едва ли не первой беспроводной клавиатурой, но успеха на рынке эта модель не добилась.

Вторая новинка — IBM PC AT. Важнейшая особенность: переход на микропроцессоры более высоких уровней (80286 с цифровым сопроцессором 80287) с сохранением совместимости с предыдущими моделями. Этот компьютер оказался законодателем стандартов на много лет вперед в целом ряде отношений: здесь впервые появилась 16-разрядная шина расширений (остающаяся стандартной и по сей день) и графические адаптеры EGA с разрешением 640х350 при глубине представления цвета 16 бит.

В 1984 г. состоялся выпуск первых компьютеров Macintosh с графическим интерфейсом, манипулятором «мышь» и многими другими атрибутами пользовательского интерфейса, без которых не мыслятся современные настольные компьютеры. Пользователей новый интерфейс не оставил равнодушными, но революционный компьютер не был совместим ни с прежними программами, ни с аппаратными компонентами. А в тогдашних корпорациях уже стали нормальными рабочими инструментами WordPerfect и Lotus 1-2-3. Пользователи уже привыкли и приспособились к символьному интерфейса DOS. С их точки зрения, Macintosh выглядел даже как-то несерьезно.

Пятое поколение компьютеров (с 1985 и по наше время)

Отличительные признаки V -го поколения:

  1. Новые технологии производства.
  2. Отказ от традиционных языков программирования таких, как Кобол и Фортран в пользу языков с повышенными возможностями манипулирования символами и с элементами логического программирования (Пролог и Лисп).
  3. Акцент на новые архитектуры (например, на архитектуру потока данных).
  4. Новые способы ввода-вывода, удобные для пользователя (например, распознавание речи и образов, синтеза речи, обработка сообщений на естественном языке)
  5. Искусственный интеллект (то есть автоматизация процессов решения задач, получения выводов, манипулирования знаниями)

Именно на рубеже 80-90-х сформировался альянс Windows-Intel. Когда в начале 1989 г. Intel выпустила микропроцессор 486, производители компьютеров не стали дожидаться примера со стороны IBM или Compaq. Началась гонка, в которую вступили десятки фирм. Но все новые компьютеры были чрезвычайно похожи друг на друга — их объединяла совместимость с Windows и процессоры от Intel.

В 1989 г. был выпущен процессор i486. Он имел встроенный математический сопроцессор, конвейер и встроенный кэш первого уровня.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 10 12 , при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза. В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство, возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

Электронно-вычислительные виды машин в нашей стране делятся на несколько поколений. Определяющими признаками при отнесении устройств к определенному поколению служат их элементы и разновидности таких важных характеристик, как быстродействие, емкость памяти, способы управления и переработки информации. Деление ЭВМ является условным - есть немалое количество моделей, которые, по одним признакам, относятся к одному, по другим - к другому виду поколения. В результате эти виды ЭВМ могут относиться к различным этапам развития техники электронно-вычислительного типа.

Первое поколение ЭВМ

Развитие ЭВМ разделяется на несколько периодов. Поколение устройств каждого периода имеет отличия друг от друга элементными базами и обеспечением математического типа.

1 поколение ЭВМ (1945-1954) - электронно-вычислительные машины на лампах электронного типа (подобные были в телевизорах первых моделей). Это время можно назвать эпохой становления такой техники.

Большая часть машин первого вида поколения называлась экспериментальными типами устройств, которые создавались с целью проверки одних или других положений теорий. Размер и вес компьютерных агрегатов, которые часто нуждались в отдельных зданиях, давно превратились в легенду. Введение чисел в первые машины производилось при помощи перфокарт, а программные управления последовательностями выполнимости функций осуществлялись, к примеру, в ENIAC, как в машинах счетно-аналитического типа, при помощи штекеров и видов наборного поля. Несмотря на то что подобный метод программирования требовал множества времени для того, чтобы подготовить машину - для соединений на наборных полях (коммутационной доске) блоков он давал все возможности для реализации счетных «способностей» ENIAC’а, и с большой выгодой имел отличия от метода программной перфоленты, который характерен для устройств релейного типа.

Как работали эти агрегаты

Сотрудники, которые были приписанными к данной машине, постоянно находились возле нее и осуществляли наблюдение за работоспособностью электронных ламп. Но, как только перегорала хотя бы одна лампа, ENIAC сразу же поднимался, и наставали хлопоты: все в спешке осуществляли поиск сгоревшей лампы. Главной причиной (может быть, и не точной) очень частой замены ламп была следующая: тепло и свечение ламп привлекали мотыльков, они залетали внутрь машины и способствовали возникновению короткого замыкания. Таким образом, 1 поколение ЭВМ было крайне уязвимым относительно внешних условий.

Если вышесказанное является правдой, то термин «жучки» («баги»), под которым подразумеваются ошибки в программном и аппаратном оборудовании компьютерной техники, набирает уже новое значение. Когда все лампы находились в рабочем состоянии, инженерный персонал мог сделать настройку ENIAC на какую-либо задачу, изменив вручную подключения 6 000 проводов. Все провода нужно было снова переключать, если требовалась задача другого типа.

Самые первые серийные машины

Первой серийно выпускавшейся ЭВМ первого поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчиками данного компьютера были: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Это был первый тип электронного цифрового компьютера общего назначения. UNIVAC, работы по разработкам которого начались в 1946 году и завершились в 1951, обладал временем сложений 120 мкс, умножений - 1800 мкс и делений - 3600 мкс.

Данные машины занимали много площади, использовали множество электроэнергии и состояли из огромной численности ламп электронного типа. К примеру, машина «Стрела» имела 6400 таких ламп и 60 тысяч штук диодов полупроводникового типа. Быстродействия этого поколения ЭВМ не превышали 2-3 тысяч операций в секунду, объемы оперативной памяти были не больше 2 Кб. Только машина «М-2» (1958) имела оперативную память 4 Кб, а быстродействие ее было 20 тысяч операций в секунду.

ЭВМ второго поколения - существенные отличия

В 1948 году физиками-теоретиками Джоном Бардиным и Уильямом Шокли, вместе с ведущим экспериментатором фирмы «Белл телефон лабораториз» Уолтером Браттейном, был создан первый действующий транзистор. Это был прибор точечно-контактного типа, в котором три металлических «усика» имели контакт с бруском из поликристаллического материала. Таким образом, поколения ЭВМ начали совершенствоваться уже в то далекое время.

Первые виды компьютеров, которые работали на основе транзисторов, отмечают свое появление в конце 1950 годов, а к середине 1960 годов были создано внешние типы устройств с более компактными функциями.

Особенности архитектуры

Одной из удивительных способностей транзистора является то, что он один может осуществлять работу за 40 ламп электронного типа, и даже в этом случае иметь большую скорость работы, выделять минимальное количество теплоты, и практически не употреблять электрические ресурсы и энергию. Вместе с процессами замены ламп электрического типа на транзисторы усовершенствовались способы сохранения информации. Произошло увеличение объема памяти, а магнитная лента, которая впервые была применена в ЭВМ первого поколения UNIVAC, начала использоваться как для введения, так и для выведения информации.

В середине 1960 годов применялось сохранение информации на дисках. Огромные виды достижений в архитектуре компьютеров позволяли получить быстрые действия в миллион операций в секунду! Например, к транзисторным компьютерам 2 поколения ЭВМ можно отнести «Стретч» (Англия), «Атлас» (США). В тот период Советский Союз также выпускал не уступающие вышеуказанным устройствам (к примеру, «БЭСМ-6»).

Создание ЭВМ, которые построены с помощью транзисторов, стало причиной уменьшения их габаритов, масс, затрат энергии и цены на них, а также увеличило надежность и производительность. Это поспособствовало расширению круга пользователей и номенклатуры решаемых задач. Учитывая улучшенные характеристики, которыми обладало 2 поколение ЭВМ, разработчики начали создавать алгоритмические виды языков для инженерно-технического (к примеру, АЛГОЛ, ФОРТРАН) и экономического (к примеру, КОБОЛ) вида расчетов.

Значение ОС

Но даже на этих этапах главной из задач технологий программирования было обеспечение экономии ресурсов - машинного времени и количества памяти. Для решения этой задачи начали создавать прототипы современных операционных систем (комплексы программ служебного типа, которые обеспечивают хорошие распределения ресурсов ЭВМ при исполнениях задач пользователя).

Виды первых операционных систем (ОС) способствовали автоматизации работы операторов ЭВМ, которая связана с выполнением заданий пользователя: ввод в устройство текстов программ, вызовы необходимых трансляторов, вызовы требуемых для программы библиотечных подпрограмм, вызовы компоновщика для размещения данных подпрограмм и программы основного типа в памяти ЭВМ, введение данных исходного типа и т. п.

Теперь, помимо программы и данных, в ЭВМ второго поколения нужно было вводить еще и инструкцию, где находилось перечисление этапов обработки и список сведений о программе и ее авторах. После этого в устройства начали вводить одновременно некоторое количество заданий для пользователей (пакеты с заданиями), в этих видах операционных систем нужно было распределить типы ресурсов ЭВМ между данными типами заданий - возник мультипрограммный режим для обработок данных (к примеру, пока происходит вывод результатов задачи одного типа, делаются расчеты для другого, и в память можно ввести данные для третьего типа задачи). Таким образом, 2 поколение ЭВМ вошло в историю появлением упорядоченных ОС.

Третье поколение машин

За счет созданий технологии производств интегральных микросхем (ИС) получилось добиться увеличений быстрого действия и уровней надежности полупроводниковых схем, а также уменьшения их размеров, потребляемых уровней мощности и стоимости. Интегральные виды микросхем состоят из десятков элементов электронного типа, которые собраны в прямоугольных пластинах кремния, и обладают длиной стороны не больше 1 см. Подобный тип пластины (кристаллов) размещают в пластмассовом корпусе небольших габаритов, размеры в котором можно определить только с помощью числа «ножек» (выводов от входа и выхода электронных схем, созданных на кристаллах).

Благодаря указанным обстоятельствам, история развития ЭВМ (поколения ЭВМ) сделала большой прорыв. Это дало возможность не только для повышения качества работы и снижения стоимости универсальных устройств, но и создать машины малогабаритного, простого, дешевого и надежного типа - мини-ЭВМ. Такие агрегаты сначала были предназначены для замены контроллеров аппаратно-реализованнных назначений в контурах управления какими-либо объектами, в автоматизированных системах управления процессами технологического типа, системах сборов и обработки данных экспериментального типа, различных управляющих комплексах на объектах подвижного типа и т. п.

Главным моментом в то время считались унификации машин с конструктивно-технологическими параметрами. Третье поколение ЭВМ начинает выпуски своих серий или семейств, совместимых типов моделей. Дальнейшие скачки развития математических и программных обеспечений способствуют созданиям программ пакетного типа для решаемости типовых задач, проблемно ориентированного программного языка (для решаемости задач отдельных категорий). Так впервые создаются программные комплексы - виды операционных систем (разработанные IBM), на которых и работает третье поколение ЭВМ.

Машины четвертого поколения

Успешное развитие электронных устройств привело к созданиям больших интегральных схем (БИС), где один кристалл имел пару десятков тысяч элементов электрического типа. Это способствовало тому, что появились новые поколения ЭВМ, элементная база которых имела большой объем памяти и малые циклы для выполнения команд: использование байтов памяти в одной машинной операции начало резко понижаться. Но, так как затраты на программирование практически не имели сокращений, то на первый план ставились задачи экономии ресурсов человеческого, а не машинного типа.

Создавались операционные системы новых видов, которые позволяли программистам делать отладки своих программ прямо за дисплеями ЭВМ (в диалоговом режиме), и это способствовало облегчению работы пользователей и ускорению разработок нового программного обеспечения. Этот момент полностью противоречил концепциям первичных этапов информационных технологий, которые использовали ЭВМ первого поколения: «процессором выполняется только тот объем работы обработок данных, который люди принципиально не могут выполнить, - массовый счет». Стали прослеживаться тенденции иного типа: «Все, что выполнимо машинами, они должны выполнять; людьми выполняется только та часть работ, которую невозможно автоматизировать».

В 1971 году была изготовлена большая интегральная схема, где полностью размещался процессор электронно-вычислительной машины простых архитектур. Стали реальными возможности для размещений в одной большой интегральной схеме (на одном кристалле) практически всех устройств электронного типа, которые не являются сложными в архитектуре ЭВМ, то есть возможности серийных выпусков простых устройств по доступным ценам (не учитывая стоимости устройств внешнего типа). Так было создано 4 поколение ЭВМ.

Появилось много дешевых (карманных клавишных ЭВМ) и управляющих устройств, которые обустроены на одной-единственной либо нескольких больших интегральных схемах, содержащих процессоры, объемы памяти и систему связей с датчиками исполнительного типа в объектах управления.

Программы, которые управляли подачами топлив в двигатели автомобилей, движениями электронных игрушек или заданными режимами стирок белья, устанавливались в память ЭВМ или при изготовлениях подобных видов контроллеров, или непосредственно на предприятиях, которые занимаются выпуском автомобилей, игрушек, стиральных машин и т. д.

На протяжении 1970 годов началось изготовление и универсальных вычислительных систем, которые состояли из процессора, объемов памяти, схем сопряжений с устройством ввода-вывода, размещенных в единой большой интегральной схеме (однокристальные ЭВМ) или в некоторых больших интегральных схемах, установленных на одной плате печатного типа (одноплатные агрегаты). В результате, когда 4 поколение ЭВМ получило распространение, происходило повторение ситуации, возникшей в 1960 годах, когда первые мини-ЭВМ забирали часть работ в больших универсальных электронно-вычислительных машинах.

Характерные свойства ЭВМ четвертого поколения

  1. Мультипроцессорный режим.
  2. Обработки параллельно-последовательного типа.
  3. Высокоуровневые типы языков.
  4. Появление первых сетей ЭВМ.

Технические характеристики этих устройств

  1. Средние задержки сигналов 0,7 нс./в.
  2. Основной вид памяти - полупроводниковый. Время выработок данных из памяти такого типа - 100-150 нс. Емкости - 1012-1013 символов.
  3. Применение аппаратной реализации оперативных систем.
  4. Модульные построения начали применяться и для средств программного типа.

Впервые персональный компьютер был создан в апреле 1976 года Стивом Джобсом, сотрудником фирмы Atari, и Стивеном Возняком, сотрудником фирмы Hewlett-Packard. На основе интегральных 8-битных контроллеров схемы электронной игры, они создали простейший, запрограммированный на языке BASIC, компьютер игрового типа «Apple», который имел огромные успехи. В начале 1977 года была зарегистрирована компания Apple Comp., и с того времени началось производство первых в мире персональных компьютеров Apple. История поколения ЭВМ отмечает это событие как наиболее важное.

В настоящее время фирма Apple занимается выпусками персональных компьютеров Macintosh, которые за большинством параметров превосходят виды компьютеров IBM PC.

ПК в России

В нашей стране в основном используют виды компьютеров IBM PC. Этот момент объясняется такими причинами:

  1. До начала 90-х США не разрешали поставлять в Советский Союз информационные технологии передового типа, к каким и относились мощные компьютеры Macintosh.
  2. Устройства Макинтош были намного дороже, чем IBM PC (в настоящее время они имеют примерно одинаковую стоимость).
  3. Для IBM PC разработано множественное число программ прикладного типа и это облегчает их использование в самых различных сферах.

Пятый вид поколения ЭВМ

В поздние1980 годы история развития ЭВМ (поколения ЭВМ) отмечает новый этап - появляются машины пятого вида поколения. Возникновение этих устройств связывают с переходами к микропроцессорам. С точки зрения структурных построений характерны максимальные децентрализации управлений, говоря о программных и математических обеспечениях - переходы на работу в программной сфере и оболочке.

Производительность пятого поколения ЭВМ - 10 8 -10 9 операций за секунду. Для этого типа агрегатов характерна многопроцессорная структура, которая созданная на микропроцессорах упрощенных типов, которых применяется множественное количество (решающее поле или среда). Разрабатываются электронно-вычислительные типы машин, которые ориентированы на высокоуровневые типы языков.

В данный период существуют и применяются две противоположные функции: персонификации и коллективизации ресурсов (коллективные доступы к сети).

Из-за вида операционной системы, которая обеспечивает простоту общения с электронно-вычислительными машинами пятого поколения, огромной базы программ прикладного типа из различных сфер человеческой деятельности, а также низких цен ЭВМ становится незаменимой принадлежностью инженеров, исследователей, экономистов, врачей, агрономов, преподавателей, редакторов, секретарей и даже детей.

Развитие в наши дни

Про шестое и более новые поколения развития ЭВМ можно пока только мечтать. Сюда можно отнести нейрокомпьютеры (виды компьютеров, которые созданы на основе сетей нейронного типа). Они пока не могут существовать самостоятельно, но активным образом моделируются на компьютерах современного типа.

Введение

Первые вычислительные машины

Начало XX века

Вторая половина XX века

Последний этап

Поколения ЭВМ

Введение

История счётных устройств насчитывает много веков. Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. Для облегчения счета люди стали использовать пальцы сначала одной руки, затем обеих, а в некоторых племенах и пальцы ног.

Раннему развитию письменного счета препятствовала сложность арифметических действий при существовавших в то время перемножениях чисел. Кроме того, писать умели немногие и отсутствовал учебный материал для письма - пергамент начал производиться примерно со II века до н.э., папирус был слишком дорог, а глиняные таблички неудобны в использовании. Эти обстоятельства объясняют появление специального счетного прибора - абака. Он представлял собой доску с желобками, в которых по позиционному принципу размещали какие-нибудь предметы - камешки, косточки. Позднее, около 500 г. н.э., абак был усовершенствован и на свет появились счёты - устройство, состоящее из набора костяшек, нанизанных на стержни. На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с XV века получил распространение "дощаный счет", который почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.

В конце XV века Леонардо да Винчи (1452-1519) создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Но рукописи да Винчи обнаружили лишь в 1967г., поэтому биография механических устройств ведется от суммирующей машины Паскаля. По его чертежам в наши дни американская фирма по производству компьютеров в целях рекламы построила работоспособную машину.

Первые вычислительные машины

В 1623 г. Вильгельм Шиккард - профессор Тюбинского университета описал устройство "часов длясчета". Это была первая механическая машина, которая могла только складывать и вычитать. В наше время по его описанию построена ее модель.

В 1642 г. французский математик Блез Паскаль (1623-1662) сконструировал счетное устройство, чтобы облегчить труд своего отца - налогового инспектора. Это устройство позволяло суммировать десятичные числа. Внешне оно представляло собой ящик с многочисленными шестеренками. Основой суммирующей машины стал счетчик-регистратор, или счетная шестерня. Она имела десять выступов, на каждом из которых были нанесены цифры.

Для передачи десятков на шестерне располагался один удлиненный зуб, зацеплявший и поворачивающий промежуточную шестерню, которая передавала вращение шестерне десятков. Дополнительная шестерня была необходима для того, чтобы обе счетные шестерни - единиц и десятков - вращались в одном направлении. Счетная шестерня при помощи храпового механизма (передающего прямое движение и не передающего обратного) соединялись с рычагом. Отклонение рычага на тот или иной угол позволяло вводить в счетчик однозначные числа и суммировать их. В машине Паскаля храповой привод был присоединен ко всем счетным шестерням, что позволяло суммировать и многозначные числа.

В 1673 г. немецкий философ, математик, физик Готфрид Вильгельм Лейбниц (1646-1716) создал "ступенчатый вычислитель" - счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни, при этом использовалась двоичная система счисления. Это был более совершенный прибор, в котором использовалась движущаяся часть (прообраз каретки) и ручка, с помощью которой оператор вращал колесо. Машина являлась прототипом арифмометра, использующегося с 1820 года до 60-х годов ХХ век

В 1804 г. французский изобретатель Жозеф Мари Жаккар (1752-1834) придумал способ автоматического контроля за нитью при работе на ткацком станке. Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Переходя к новому рисунку, оператор просто заменял одну колоду перфокарт другой. Создание ткацкого станка, управляемого картами с пробитыми на них отверстиями и соединенными друг с другом в виде ленты, относится к одному из ключевых открытий, обусловивших дальнейшее развитие вычислительной техники.

Чарльз Ксавьер Томас (1785-1870) в 1820г. создал первый механический калькулятор, который мог не только складывать и умножать, но и вычитать и делить. Бурное развитие механических калькуляторов привело к тому, что к 1890 году добавился ряд полезных функций: запоминание промежуточных результатов с использованием их в последующих операциях, печать результата и т.п. Создание недорогих, надежных машин позволило использовать их для коммерческих целей и научных расчетов.

В 1822г. английский математик Чарлз Бэббидж (1792-1871) выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, Разностная машина, работала на паровом двигателе. Она высчитывала таблицы логарифмов методом постоянной дифференциации и заносила результаты на металлическую пластину. Работающая модель, которую он создал в 1822 году, была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.).

Аналитическую машину Бэббиджа построили энтузиасты из Лондонского музея науки. Она состоит из четырех тысяч железных, бронзовых и стальных деталей и весит три тонны. Правда, пользоваться ею очень тяжело - при каждом вычислении приходится несколько сотен (а то и тысяч) раз крутить ручку автомата. Числа записываются (набираются) на дисках, расположенных по вертикали и установленных в положения от 0 до 9. Двигатель приводится в действие последовательностью перфокарт, содержащих инструкции (программу).

Одновременно с английским ученым работала леди Ада Лавлейс (1815-1852). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени. Леди Лавлейс была единственной дочерью Джорджа Гордона Байрона. Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х гг. нашего столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada. С недавнего времени у программистов всего мира появился свой профессиональный праздник. Он так и называется - "День программиста" - и празднуется 10 декабря. Как раз в день рождения Ады Лавлейс.

В 1855 г. братья Джорж и Эдвард Шутц из Стокгольма построили первый механический компьютер, используя работы Ч. Бэббиджа. В 1878 г. русский математик и механик Пафнутий Львович Чебышев создает суммирующий аппарат с непрерывной передачей десятков, а в 1881 году - приставку к нему для умножения и деления.

В 1880г. Вильгодт Теофилович Однер, швед по национальности, живший в Санкт-Петербурге сконструировал арифмометр. Его арифмометры отличались надежностью, средними габаритами и удобством в работе. Над арифмометром Однер начал работать в 1874 году, а в 1890 году он налаживает массовый выпуск арифмометров. Их модификация "Феликс" выпускалась до 50-х годов XX века.

Начало XX века

1918 год. Русский ученый М.А. Бонч-Бруевич и английские ученые В. Икклз и Ф. Джордан (1919) независимо друг от друга создали электронное реле, названное англичанами триггером, которое сыграло большую роль в развитии компьютерной техники.

В 1930г. Виннивер Буш (1890-1974) конструирует дифференциальный анализатор. По сути, это первая успешная попытка создать компьютер, способный выполнять громоздкие научные вычисления. Роль Буша в истории компьютерных технологий очень велика, но наиболее часто его имя всплывает в связи с пророческой статьей "As We May Think" (1945), в которой он описывает концепцию гипертекста.

В 1937 году гарвардский математик Говард Эйкен предложил проект создания большой счетной машины. Спонсировал работу президент компании IBM Томас Уотсон, который вложил в нее 500 тыс. $. Проектирование Mark-1 началось в 1939 году, строило этот компьютер нью-йоркское предприятие IBM. Компьютер содержал около 750 тыс. деталей, 3304 реле и более 800 км проводов. В 1946 году Джон фон Нейман предложил ряд новых идей организации ЭВМ, в том числе концепцию хранимой программы, т.е. хранения программы в запоминающем устройстве. В результате реализации идей фон Неймана была создана архитектура ЭВМ, во многих чертах сохранившаяся до настоящего времени.

В 1947 году появилась счётная машина Mark-2, которая представляла собой первую многозадачную машину - наличие нескольких шин позволяло одновременно передавать из одной части компьютера в другую несколько чисел. 23 декабря 1947г. сотрудники Bell Telephone Laboratories Джон Бардин и Уолтер Бремен впервые продемонстрировали свое изобретение, получившее название транзистор. Это устройство спустя десять лет открыло совершенно новые возможности.

В 1948 году академиком С.А. Лебедевым (1890-1974) и Б.И. Рамеевым был предложен первый проект отечественной цифровой электронно-вычислительной машины: сначала МЭСМ - малая электронная счетная машина (1951 год, Киев), затем БЭСМ - быстродействующая электронная счетная машина (1952 год, Москва). Параллельно с ними создавались Стрела, Урал, Минск, Раздан, Наири.

В 1951 году в Англии появились первые серийные компьютеры Ferranti Mark-1 и LEO-1. А через 5 лет фирма Ferranti выпустила ЭВМ Pegasus, в которой впервые нашла воплощение концепция регистров общего назначения. Джей Форрестер запатентовал память на магнитных сердечниках. Впервые такая память применена на машине Whirlwind-1. Она представляла собой два куба с 32х32х17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля четности. В этой машине была впервые использована универсальная неспециализированная шина (взаимосвязи между различными устройствами компьютера становятся гибкими) и в качестве систем ввода-вывода использовались два устройства: электронно-лучевая трубка Вильямса и пишущая машинка с перфолентой (флексорайтер).

В 1952г. началась опытная эксплуатация отечественного компьютера БЭСМ-1. В СССР в 1952-1953 годах А.А. Ляпунов разработал операторный метод программирования (операторное программирование), а в 1953-1954 годах Л.В. Канторович - концепцию крупноблочного программирования. В 1955 году увидел свет первый алгоритмический язык FORTRAN (FORmule TRANslator - переводчик формул). Он использовался для решения научно-технических и инженерных задач и разработан сотрудниками фирмы IBM под руководством Джон Бэкуса. В 1958г. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Semiconductor независимо друг от друга изобретают интегральную схему.

1959 г. Под руководством С.А. Лебедева создана машина БЭСМ-2 производительностью 10 тыс. опер. /с. С ее применением связаны расчеты запусков космических ракет и первых в мире искусственных спутников Земли, а затем машина М-20 - для своего времени одна из самых быстродействующих в мире (20 тыс. опер. /с.).

В 1960 году появился ALGOL (Algoritmic Language - алгоритмический язык), ориентированный на научное применение. В него введено множество новых понятий, например, блочная структура. Этот язык стал концептуальным основанием многих языков программирования. Тринадцать европейских и американских специалистов по программированию в Париже утвердили стандарт языка программирования ALGOL-60.

1963 г. - начало выпуска ЭВМ "Минск-32" с внешней памятью на сменных магнитных дисках. Появились машины второго поколения, построенные на неполупроводниковой элементной базе - на магнитных элементах. Так, в МГУ им. М.В. Ломоносова коллективом под руководством Н.П. Брусенцова была создана машина Сетунь (производившаяся серийно в 1962-1964 годах).

Машина "Сетунь" является малогабаритной машиной, выполненной на магнитных элементах. Это одноадресная машина с фиксированной запятой. В качестве системы счисления в ней используется троичная система с цифрами 0, 1, - 1. "Сетунь" является первой в мире машиной, использующей эту систему счисления.

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора. Фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью. В 1967г. под руководством С.А. Лебедева и В.М. Мельникова в ИТМ и ВТ создана быстродействующая вычислительная машина БЭСМ-6. За ним последовал "Эльбрус" - ЭВМ нового типа, производительностью 10 млн. опер. /с. 1968г. в США фирма "Барроуз" выпустила первую быстродействующую ЭВМ на БИСах (больших интегральных схемах) - В2500 и В3500.

В 1968-1970 годах профессор Никлаус Вирт создал в Цюрихском политехническом университете язык PASCAL, названный в честь Блеза Паскаля - первого конструктора устройства, которое теперь относится к классу цифровых вычислительных машин. PASCAL создавался как язык, который, с одной стороны, был бы хорошо приспособлен для обучения программированию, а с другой - давал бы возможность эффективно решать самые разнообразные задачи на современных ЭВМ.

Вторая половина XX века

29 октября 1969 года принято считать днем рождения Сети. В этот день была предпринята самая первая, правда, не вполне удавшаяся, попытка дистанционного подключения к компьютеру, находившемуся в исследовательском центре Стэнфордского университета (SRI), с другого компьютера, который стоял в Калифорнийском университете в Лос-Анджелесе (UCLA). Удаленные друг от друга на расстояние 500 километров, SRI и UCLA стали первыми узлами будущей сети ARPANet.

В 1971г. фирмой Intel (США) создан первый микропроцессор (МП) - программируемое логическое устройство, изготовленное по технологии СБИС. Появился компьютер IBM/370 модель 145 - первый компьютер, в основной памяти которого использовались исключительно интегральные схемы. В свет выходит первый карманный калькулятор Poketronic.

Деннис Ритчи из Bell Lab"s разработал язык программирования "С" (Си). Так его назвали потому, что предыдущая версия называлась "В".

В 1968 году в Минске началась работа над первой машиной семейства ЕС. 1971 г. - начало выпуска моделей серии ЕС, ЕС-1020 (20 тыс. оп/сек), так как с 70-х годов прекратился выпуск "Минсков" и пензенских "Уралов". Хотя надо понимать, что ориентация на системы IBM не означала бездумного копирования. Это было просто невозможно, поскольку, несмотря на некоторое потепление отношений с Западом, легальные пути получить машину и программное обеспечение полностью отсутствовали. Разработка моделей "Ряда" шла на основе имевшихся публикаций по принципам архитектуры и операционных систем IBM. Так что все машины ЕС можно в какой-то мере считать оригинальными разработками и все они были запатентованы.

1974 г. Фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами.

В 1975г. Джин Амдал разработал компьютер четвертого поколения на БИС - AMDAL-470 V/6. Гарри Килдалл из фирмы Digital Reseach разработал операционную систему CP/M.

Молодой программист Пол Аллен и студент Гарвардского университета Билл Гейтс реализовали для Альтаира язык Бейсик. Впоследствии они основали фирму Майкрософт (Microsoft), являющуюся сегодня крупнейшим производителем программного обеспечения.

В 1976 г. молодые американцы Стив Джобс и Стив Возняк организовали предприятие по изготовлению персональных компьютеров "Apple" ("Яблоко"), предназначенных для большого круга непрофессиональных пользователей.

В 1980 году появился язык ADA, названный в память об Аде Лавлейс - первой программистки в истории вычислительной техники. Он был создан во Франции по заказу американского министерства обороны как универсальный язык программирования. В него включены такие возможности как системное программирование, параллельность и т.д.

1981 г. Фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.1982 г. Фирма Intel выпустила микропроцессор 80286.

В 1982 году было положено начало знаменитой серии х86. 16-разрядный микропроцессор Intel 80286 на базе 134 тыс. транзисторов по производительности втрое опережал модели конкурентов. Отличительной особенностью этой разработки было то, что здесь впервые реализован принцип программной совместимости с процессорами следующих поколений за счет встроенных средств управления памятью.

В 1982 году Питер Нортон случайно стер нужный файл с жесткого диска своего персонального компьютера. Восстановление файла оказалось сложным и кропотливым делом. Однако сложившаяся ситуация привела к тому, что Нортон создал программу, являющуюся прообразом сегодняшних утилит.

1984 г. Корпорация Apple Computer выпустила компьютер Macintosh - первую модель знаменитого впоследствии семейства Macintosh c удобной для пользователя операционной системой, развитыми графическими возможностями, намного превосходящими в то время те, которыми обладали стандартные IBM-совместимые ПК с MS-DOS. Эти компьютеры быстро приобрели миллионы поклонников и стали вычислительной платформой для целых отраслей, таких например, как издательское дело и образование.

Sony и Philips разрабатывают стандарт CD-ROM-стандарт записи компакт-дисков. Также разработаны стандарты MIDI и DNS. Фирма IBM выпустила персональный компьютер IBM PC/AT.

1985 г. фирма Intel выпустила 32-битный микропроцессор 80386, состоящий из 250 тыс. транзисторов. Фирма Microsoft выпустила первую версию графической операционной среды Windows. В тот же год произошло появление нового языка программирования "C++".

В 1986 году в СССР начинается выпуск одной из самых популярных машин линии СМ, микроЭВМ СМ 1810, которая тоже могла выступать в роли персонального компьютера. Стоит упомянуть те персональные компьютеры, которые в середине 80-х годов выпускала отечественная промышленность. По уровню возможностей их делили на бытовые и профессиональные. К классу бытовых относилась выпускавшаяся в Зеленограде "Электроника БК-0010" (БК - бытовой компьютер), которая в качестве дисплея использовала обычный телевизор и обеспечивала всего 64 Кбайт ОЗУ. А другая разработка Министерства электронной промышленности, "Электроника-85", была оснащена специальным дисплеем и 4 Мбайт оперативной памяти. К классу профессиональных относилась и машина под названием "Искра-226".

Конец 80-х - конец эпохи советского компьютеростроения. Время расцвета отечественных школ по разработке ЭВМ уже позади. Однако их 40-летняя история имела достойный, хотя и несколько грустный финал. В 1989 году завершается работа над двумя последними советскими суперЭВМ - введена в опытную эксплуатацию "Электроника СС БИС" и закончена разработка "Эльбруса 3-1". Обе машины - плод творческих усилий крупнейших советских инженеров, учеников Сергея Алексеевича Лебедева.

В 1989 г. Intel выпускает очередной чип - 80486. Это первый процессор с количеством транзисторов, превышающим 1 млн. Microsoft выпустила текстовый процессор WORD. Разработан формат графических файлов GIF.

В марте 1989 г. Тим Бернерс-Ли предложил концепцию новой распределенной информационной системы, которую назвал World Wide Web. Гипертекстовая технология должна была позволить легко "перепрыгивать": из одного документа в другой. В 1990 году эти предложения были приняты, и проект стартовал. Тим Бернерс-Ли разработал язык HTML (Hypertext Markup Language - язык разметки гипертекста; основной формат Web-документов) и прототип Всемирной паутины. В 1991г. фирма Microsoft выпустила ОС Windows 3.1. Разработан графический формат JPEG. В 1992г. появилась первая бесплатная операционная система с большими возможностями - Linux. Финский студент Линус Торвальдс (автор этой системы) решил поэкспериментировать с командами процессора Intel 386 и то, что получилось, выложил в Internet. Сотни программистов из разных стран мира стали дописывать и переделывать программу. Она превратилась в полнофункциональную работающую операционную систему. История умалчивает о том, кто решил назвать ее Linux, но как появилось это название - вполне понятно. "Linu" или "Lin" от имени создателя и "х" или "ux" - от UNIX, т.к. новая ОС была очень на нее похожа, только работала теперь и на компьютерах с архитектурой х86.

Последний этап

В 1993г. фирма Intel выпустила 64-разрядный микропроцессор Pentium, который состоял из 3,1 млн. транзисторов и мог выполнять 112 млн. операций в секунду. Появился формат сжатия видео MPEG. В 1996 г. фирма Microsoft выпустила Internet Explorer 3. 0 - достаточно серьезного конкурента Netscape Navigator. В 1998 г. браузер Internet Explorer становится частью операционной системы Windows 98. Представители Microsoft утверждают, что удалить браузер из ОС невозможно.

17 февраля 2000 г. выпущена окончательная версия Windows 2000 (также называемая Win2k, W2k или Windows NT 5. 0) - это операционная система семейства Windows NT компании Microsoft, предназначенная для работы на компьютерах с 32-битными процессорами (с архитектурой совместимой с Intel IA-32).

Июнь 2000г. - Компания IBM создала новый суперкомпьютер серии RS/6000 SP - ASCI White (Accelerated Strategic Computing Initiative White Partnership) - первый компьютер, производительность которого превышает 10 TFLOPS. Пиковая производительность суперкомпьютера - 12,3 TFLOPS; компьютер способен постоянно работать на скорости 3 TFLOPS.

25 октября 2001 года - Windows XP (кодовое название при разработке - Whistler; внутренняя версия - Windows NT 5. 1) - операционная система семейства Windows NT от компании Microsoft. Она является развитием Windows 2000 Professional. Название XP происходит от англ. experience (опыт).

24 апреля 2003 г. - Windows Server 2003 (кодовое название при разработке - Whistler Server, внутренняя версия - Windows NT 5. 2) - это операционная система семейства Windows NT от компании Microsoft, предназначенная для работы на серверах.

30 ноября 2006 - Windows Vista (имеющая кодовое название Longhorn) - операционная система семейства Microsoft Windows NT, линейки операционных систем, используемых на пользовательских персональных компьютерах, а также Office 2007.

В 2008 г. - Windows Server 2008 (кодовое имя "Longhorn Server") - новая версия серверной операционной системы от Microsoft. Эта версия должна стать заменой Windows Server 2003 как представитель операционных систем поколения Vista (NT 6. x).

Поколения ЭВМ

Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспечением.

Первое поколение ЭВМ

Первое поколение (1945-1958) ЭВМ было построено на электронных лампах - диодах и триодах. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Применение вакуумно-ламповой технологии, использование систем памяти на ртутных линиях задержки, магнитных барабанах, электронно-лучевых трубках (трубках Вильямса), делало их работу весьма ненадёжной. Кроме этого, такие ЭВМ имели большой вес и занимали по площади значительные территории, иногда целые здания. Для ввода-вывода данных использовались перфоленты и перфокарты, магнитные ленты и печатающие устройства.

Была реализована концепция хранимой программы. Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм, быстродействие они имели от 10 до 20 тыс. оп. /сек.

Машины этого поколения: ENIAC (США), МЭСМ (СССР), БЭСМ-1, М-1, М-2, М-З, "Стрела", "Минск-1", "Урал-1", "Урал-2", "Урал-3", M-20, "Сетунь", БЭСМ-2, "Раздан", IBM - 701, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина "Стрела" состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2-3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины "М-2" (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.

Второе поколение ЭВМ

ЭВМ 2-го поколения были разработаны в 1959-1967 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Компьютеры стали более надежными, быстродействие их повысилось, потребление энергии уменьшилось, уменьшились габаритные размеры машин.

С появлением памяти на магнитных сердечниках цикл ее работы уменьшился до десятков микросекунд. Главный принцип структуры - централизация. Появились высокопроизводительные устройства для работы с магнитными лентами, устройства памяти на магнитных дисках. Кроме этого, появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Быстродействие машин 2-го поколения уже достигала 100-5000 тыс. оп. /сек.

Примеры машин второго поколения: БЭСМ-6, БЭСМ-4, Минск-22 - предназначены для решения научно-технических и планово-экономических задач; Минск-32 (СССР), ЭВМ М-40, - 50 - для систем противоракетной обороны; Урал - 11, - 14, - 16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических задач.

Третье поколение ЭВМ

В ЭВМ третьего поколения (1968-1973 гг.) использовались интегральные схемы. Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ.

Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной.

Компьютеры проектировались на основе интегральных схем малой степени интеграции (МИС - 10-100 компонентов на кристалл) и средней степени интеграции (СИС - 10-1000 компонентов на кристалл). Появилась идея, которая и была реализована, проектирования семейства компьютеров с одной и той же архитектурой, в основу которой положено главным образом программное обеспечение. В конце 60-х появились мини-компьютеры. В 1971 году появился первый микропроцессор. Быстродействие компьютеров 3-го поколения достигло порядка 1 млн. оп. /сек.

В эти годы производство компьютеров приобретает промышленный размах. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Странами СЭВ были выпущены ЭВМ единой серии "ЕС ЭВМ": ЕС-1022, ЕС-1030, ЕС-1033, ЕС-1046, ЕС-1061, ЕС-1066 и др. К ЭВМ этого поколения также относится "IВМ-370", "Электроника-100/25", "Электроника-79", "СМ-3", "СМ-4" и др.

Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). В 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение ЭВМ

В компьютерах четвертого поколения (1974-1982 гг.), использование больших

интегральных схем (БИС - 1000-100000 компонентов на кристалл) и сверхбольших интегральных схем (СБИС - 100000-10000000 компонентов на кристалл), увеличило их быстродействие до десятков и сотен млн. оп. /сек.

Началом данного поколения считают 1975 год - фирма Amdahl Corp. выпустила шесть компьютеров AMDAHL 470 V/6, в которых были применены БИС в качестве элементной базы. Стали использоваться быстродействующие системы памяти на интегральных схемах - МОП ЗУПВ емкостью в несколько мегабайт. В случае выключения машины данные, содержащиеся в МОП ЗУПВ, сохраняются путем автоматического переноса на диск. При включении машины запуск системы осуществляется при помощи хранимой в ПЗУ (постоянное запоминающее устройство) программы самозагрузки, обеспечивающей выгрузку операционной системы и резидентного программного обеспечения в МОП ЗУПВ.

Развитие ЭВМ 4-го поколения пошло по 2 направлениям: 1-ое направление - создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, "Эльбрус-1", "Эльбрус-2" и др. Многопроцессорные вычислительные комплексы (МВК)"Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли.

2-ое направление - дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются компьютеры фирмы Apple, IBM - PC (XT, AT, PS /2), отечественные "Искра", "Электроника", "Мазовия", "Агат", "ЕС-1840", "ЕС-1841" и др. Начиная с этого поколения ЭВМ стали называть компьютерами. Программное обеспечение дополняется базами и банками.

Пятое поколение ЭВМ

ЭВМ пятого поколения - это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

На современном этапе

компьютер устройство дистанционный история

Потребность в более быстрых, дешевых и универсальных процессорах вынуждает производителей постоянно наращивать число транзисторов в них. Однако этот процесс не бесконечен. Поддерживать экспоненциальный рост этого числа, предсказанный Гордоном Муром в 1973 году, становится все труднее. Специалисты утверждают, что этот закон перестанет действовать, как только затворы транзисторов, регулирующие потоки информации в чипе, станут соизмеримыми с длиной волны электрона (в кремнии, на котором сейчас строится производство, это порядка 10 нанометров). И произойдет это где-то между 2010 и 2020 годами. По мере приближения к физическому пределу архитектура компьютеров становится все более изощренной, возрастает стоимость проектирования, изготовления и тестирования чипов. Таким образом, этап эволюционного развития рано или позно сменится революционными изменениями.

В результате гонки наращивания производительности возникает множество проблем. Наиболее острая из них - перегрев в сверхплотной упаковке, вызванный существенно меньшей площадью теплоотдачи. Концентрация энергии в современных микропроцессорах чрезвычайно высока. Нынешние стратегии рассеяния образующегося тепла, такие как снижение питающего напряжения или избирательная активация только нужных частей в микроцепях малоэффективны, если не применять активного охлаждения.

С уменьшением размеров транзисторов стали тоньше и изолирующие слои, а значит, снизилась и их надежность, поскольку электроны могут проникать через тонкие изоляторы (туннельный эффект). Данную проблему можно решить снижением управляющего напряжения, но лишь до определенных пределов.

На сегодняшний день основное условие повышения производительности процессоров - методы параллелизма. Как известно, микропроцессор обрабатывает последовательность инструкций (команд), составляющих ту или иную программу. Если организовать параллельное (то есть одновременное) выполнение инструкций, общая производительность существенно вырастет. Решается проблема параллелизма методами конвейеризации вычислений, применением суперскалярной архитектуры и предсказанием ветвлений. Многоядерная архитектура. Эта архитектура подразумевает интегрирование нескольких простых микропроцессорных ядер на одном чипе. Каждое ядро выполняет свой поток инструкций. Каждое микропроцессорное ядро значительно проще, чем ядро многопотокового процессора, что упрощает проектирование и тестирование чипа. Но между тем усугубляется проблема доступа к памяти, необходима замена компиляторов.

Многопотоковый процессор. Данные процессоры по архитектуре напоминают трассирующие: весь чип делится на процессорные элементы, напоминающие суперскалярный микропроцессор. В отличие от трассирующего процессора, здесь каждый элемент обрабатывает инструкции различных потоков в течение одного такта, чем достигается параллелизм на уровне потоков. Разумеется, каждый поток имеет свой программный счетчик и набор регистров.

"Плиточная" архитектура. Сторонники считают, что ПО должно компилироваться прямо в "железе", так как это даст максимальный параллелизм. Такой подход требует достаточно сложных компиляторов, которые пока еще не созданы. Процессор в данном случае состоит из множества "плиток" (tiles), каждая из которых имеет собственное ОЗУ и связана с другими "плитками" в своеобразную решетку, узлы которой можно включать и отключать. Очередность выполнения инструкций задается ПО.

Многоетажная архитектура. Здесь речь идет не о логической, а о физической структуре. Идея состоит в том, что чипы должны содержать вертикальные "штабеля" микроцепей, изготовленных по технологии тонкопленочных транзисторов, заимствованной из производства TFT-дисплеев. При этом относительно длинные горизонтальные межсоединения превращаются в короткие вертикальные, что снижает задержку сигнала и увеличивает производительность процессора. Идея "трехмерных" чипов уже реализована в виде работающих образцов восьмиэтажных микросхем памяти. Вполне возможно, что она приемлема и для микропроцессоров, и в недалеком будущем все микрочипы будут наращиваться не только горизонтально, но и вертикально.

Краткая история компьютерной техники

1623г. Первая "считающая машина", созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами.

1644г. "Вычислитель" Блеза Паскаля - первая по настоящему популярная считающая машина, производившая арифметические действия над 5-значными числами.

1668г. Вычислитель сера Сэмюэля Морланда, предназначавшийся для финансовых операций.

1674г. Вильгельм Годфрид фон Лейбниц сконструировал механическую счётную

машину, которая умела производить не только операции сложения и вычитания, но и умножения!

1820г. Первый калькулятор - "Арифмометр" Шарля де Кольмара. Продержалось на рынке (с некоторыми усовершенствованиями) целых 90 лет!

1834г. Знаменитая "Аналитическая машина" Чарльза Бэббиджа - первый программируемый компьютер, использовавший примитивные программы на перфокартах.

1871г. Бэббидж создал прототип аналитического устройства компьютера и печатающее устройство - принтер.

1886г. Дорр Фелт создал Comptometer - первое устройство с клавишным вводом данных.

1890г. В США произведена перепись населения - впервые в этом участвовала "считающая машина", созданная Германом Холлритом.

1935г. Корпорация IBM (International Business Machines) начала выпуск массовых вычислителей IBM-601.

1937г. Математик Алан Тюринг создал "математическую модель" компьютера, получившую название "Машина Тюринга".

1938г. Кондрад Цузе, друг и коллега знаменитого Вернера фон Брауна, создал в Берлине один из первых компьютеров - V1.

1943г. Говард Эйкен создает "ASCC Mark I" - машину, считающуюся дедушкой современных компьютеров. Её вес составлял более 7 тонн и состоял из 750 000 частей. Машина применялась в военных целях - для расчёта артиллерийских таблиц.

1945г. Джон фон Нейман разработал теоретическую модель устройства компьютера - первое в мире описание компьютера, использовавшего загружаемые извне программы. В этом же году Мочли и Эккерт создали ENIAC - самый грандиозный и мощный ламповый компьютер той эпохи. Компьютер весит более 70 тон и содержит в себе почти 18 тысяч электронных ламп. Рабочая частота компьютера не превышает 100КГц (несколько сот операций в секунду).

1956г. В Массачусетском технологическом институте создан первый компьютер на транзисторной основе. В этом же году IBM создала первый накопитель информации - прототип винчестера - жёсткий диск КАМАС 305.

1958-1959г.Д. Килби и Р. Нойс создали уникальную цепь логических элементов на

поверхности кремниевого кристалла, соединённого алюминиевыми контактами -

первый прототип микропроцессора, интегральную микросхему.

1960г. АТ разработали первый модем.

1963г. Дуглас Энгельбарт получил патент на изобретённый им манипулятор - "мышь".

1968г. Основание фирмы Intel Робертом Нойсем и Гордоном Мурем.

1969г. Intel представляет первую микросхему оперативной памяти объёмом 1 Кб. В этом же году фирма Xerox создаёт технологию лазерного копирования изображений, которая через много лет ляжет в основу технологии печати лазерных принтеров. Первые "ксероксы".

1971г. ПО заказу японского производителя микрокалькуляторов Busicom команда разработчиков Intel под руководством Теда Хоффа создаёт первый 4-разрядный микропроцессор Intel-4004. Скорость процессора - 60 тысяч операций в секунду. В этом же году команда и исследователей лаборатории IBM в Сан-Хосе создает первый 8-дюймовый "флоппи-диск".

1972г. Новый микропроцессор от Intel - 8-разрядный Intel-8008. Xerox создаёт первый микрокомпьютер Dynabook, размером чуть больше записной книжки.

1973г. В научно-исследовательском центре Xerox создан прототип первого персонального компьютера. Первый герой, появившийся на экране, - Коржик, персонаж детского телесериала "Улица Сезам". В этом же году Scelbi Computer Consulting Company выпускает на рынок первый готовый персональный компьютер, укомплектованный процессором Intel-8008 и с 1 Кб оперативной памяти. В этом же году IBM представляет жёсткий диск IBM 3340. Ёмкость диска составляла 16 Кб, он содержал 30 магнитных цилиндров по 30 дорожек в каждом. Из-за этого и был назван "винчестером" (30/30" - марка знаменитой винтовки). И в этом же году Боб Мэткэлф изобретает систему связи компьютеров, получившую название Ethernet.

1974г. Новый процессор от Intel - 8-разрядный Intel-8080. Скорость 640 тысяч операций в секунду. В скором времени на рынке появляется недорогой компьютер Altair на основе этого процессора, работающий под управлением операционной системы CP/M. В этом же году первый процессор выпускает главный конкурент Intel в 70-х годах - фирма Zilog.

1975г. IBM выпускает первый лэптоп. Первой музыкальной композицией, воспроизведённой с помощью компьютера, стала мелодия песни The Beatles "Fool On The Hill".

1976г. Фирма Advanced Micro Devices (AMD) получает право на копирование инструкций и микрокода процессоров Intel. Начало "войны процессоров". В этом же году Стив Возняк и Стив Джобс собирают в собственной гаражной мастерской компьютер серии Apple. А 1 апреля того же года на свет появляется компания Apple Computer. Компьютер Apple I поступает в широкую продажу с весьма сакраментальной цифрой на ценнике - 666. 66$.

1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который

1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который снабжён оперативной памятью в 4 Кб, постоянной памятью 16 Кб, клавиатурой и дисплеем. Цена за всё удовольствие - 1300$. Apple II обзаводится модной добавкой - дисководом флоппи-дисков.

1978г. Intel представляет новый микропроцессор - 16 разрядный Intel-8086, работающий с частотой 4,77 МГц (330 тысяч операций в секунду). Основана компания Hayes - будущий лидер в производстве модемов.commodore выпустила на рынок первые модели матричных принтеров.

1979г. Появление процессора Intel-8088, а также первых видеоигр и компьютерных приставок для них. Японская фирма NEC выпускает первый микропроцессор в этой стране. Hayes выпускает первый модем со скоростью 300 бод, предназначенный для нового компьютера Apple.

1980г. Компьютер Atari становится самым популярным компьютером года. Seagate Technologies представляет первый винчестер для персональных компьютеров - жёсткий диск диаметров 5. 25 дюймов.

1981г. Появляется компьютер Apple III. Intel представляет первый сопроцессор. Основана фирма Creative Technology (Сингапур) - создатель первой звуковой карты. Появляется в продаже первый массовый жёсткий диск ёмкостью 5 Мб и стоимостью 1700$.

1982г. На рынке появляется новая модель от IBM - знаменитая IBM PC AT - и первые клоны IBM PC. IBM представляет процессор 16-разрядный 80286. Рабочая частота 6 МГц. (1,5 млн. операций в секунду). Hercules представляет первую чёрно-белую видеокарту - Hercules Graphics Adapter (HGA).

1983г.commodore выпускает первый портативный компьютер с цветным дисплеем (5 цветов). Вес компьютера 10кг, цена 1600$. IBM представляет компьютер IBM PC XT, укомплектованный 10 Мб жёстким диском, дисководом на 360 Кб и 128 (позднее 768) Кб оперативной памяти. Цена компьютера составляла 5000$. Выпущен миллионный компьютер Apple II. Появляются первые модули памяти SIMM. Philips и Sony представляют миру технологию CD-ROM.

1984г. Apple выпускает модем на 1200 бод. Hewlett-Packard выпускает первый лазерный принтер серии LaserJet с разрешением до 300 dpi. Philips выпускает первый дисковод CD-ROM. IBM представляет первые мониторы и видеоадаптеры EGA (16 цветов, разрешение - 630х350 точек на дюйм), а также профессиональные 14-дюймовые мониторы, поддерживающие 256 цветов и разрешение в 640х480 точек.

1985г. Новый процессор от Intel - 32 разрядный 80386DX (со встроенным сопроцессором). Рабочая частота 16 МГц, скорость около 5 млн. операций в секунду. Первый модем от U. S. Robotics - Courier 2400 бод.

1986г. На компьютере Amiga демонстрируется первый анимационный ролик со звуковыми эффектами. Рождение технологии мультимедиа. Рождение стандарта SCSI (Small Computer System Interface).

1987г. Intel представляет новый вариант процессора 80386DX с рабочей частотой 20 МГц. Шведским национальным институтом контроля и измерений утверждается первый стандарт допустимых значений излучения мониторов. U. S. Robotics представляет модем Courier HST 9600

1988г.compaq выпускает первый компьютер с оперативной памятью 640 Кб - стандартная память для всех последующих поколений DOS. Hewlett-Packard выпускает первый струйный принтер серии DeskJet. Стив Джобс и основанная им компания NexT выпускает первую рабочую станцию, оснащённую новым процессором Motorola, фантастическим для того времени объёмом памяти (8 Мб), 17-дюймовым монитором и жёстким диском на 256 Мб. Цена компьютера - 6500$.

1989г. Creative Labs представляет Sound Blaster 1. 0, 8-битную монофоническую звуковую карту. Рождение стандарта SuperVGA (разрешение 800х600 точек с поддержкой 16 тысяч цветов).

1990г. Рождение сети Интернет. Intel представляет новый процессор - 32-разрядный 80486SX. Скорость 27 миллионов операций в секунду. IBM представляет новый стандарт видеоплат - XGA - в качестве замены традиционному VGA (разрешение 1024х768 точек с поддержкой 65 тысяч цветов).

1991г. Apple представляет первый монохромный ручной сканер. AMD представляет усовершенствованные "клоны" процессоров Intel - 386DX с тактовой частотой 40 МГц и 486SX с частотой 20 МГц. Первая стерео музыкальная карта - 8-битный Sound Blaster Pro.

1992г. NEC выпускает первый привод CD-ROM с удвоенной скорость (2х).

1993г. Intel представляет новый стандарт шины и слота для подключения дополнительных плат - PCI. Первый процессор нового поколения процессоров Intel - 32-разрядный Pentium. Рабочая частота от 60 МГ, быстродействие - от 100 млн. операций в секунду. Microsoft и Intel совместно с крупнейшими производителями ПК вырабатывают технологию Plug&Play (включи и работай), допускающую автоматическое распознавание компьютером новых устройств, а также их конфигурацию.

1994г. Iomega представляет диски и дисководы ZIP и JAZ - альтернативу

существующим дискетам 1. 44 Мб. US Robotics выпускает первый модем со скоростью 28800 бод.

1995г. Анонсирован стандарт новых носителей на лазерных дисках - DVD. AMD выпускает последний процессор поколения 486 - AMD 486DX-120. Intel представляет процессор Pentium Pro, предназначенный для мощных рабочих станций. Компания 3dfx выпускает набор микросхем Voodoo, который лёг в основу первых ускорителей трёхмерной графики для домашних ПК. Первые очки и шлемы "виртуальной реальности" для домашних ПК.

1996г. Рождение шины USB. Intel выпускает процессор Pentium MMX с поддержкой новых инструкций для работы с мультимедиа. Начало производства массовых жидкокристаллических мониторов для домашних ПК.

1997г. Появление процессоров Pentium II, и альтернативных процессоров AMD K6. Первые приводы DVD. Выпуск первых звуковых плат формата PCI. Новый графический порт AGP.

1998г. Apple выпускает новый компьютер iMac, отличающийся не только своей мощью, но и потрясающим дизайном. Выпуск процессоров Celeron с урезанной кэш-памятью второго уровня. "Трёхмерная революция": на рынке появляется десяток новых моделей трёхмерных ускорителей, интегрированных в обычные видеокарты. В течение года прекращён выпуск видеокарт без 3D-ускорителей.

1999г. Выпуск новых процессоров Pentium III.

2000-2003 гг. Жёсткая конкурентная борьба между Intel и AMD, приведшая к созданию процессоров с ужасающей скоростью 3200 МГц. Это привело и к росту оперативной памяти, объёму жёстких дисков, видеокарт и т.д.

Боьшинство людей, по-видимому, считают, что термины “вычислительная машина” и “вычислительная техника" синонимами и связывают их с физическим оборудованием, как, например, микропроцессором, дисплеем, дисками, принтерами и другими истройствами, привлекающими внимание людей, когда человек видит компьютер. Хотя эти устройства и важны, всё-таки они составляют только “верхушку айсберга”. На начальном этапе использованаия современного компьютера мы имеем дело не с самим компьютером, а с совокупностью правил, называемых языками программироваания, на которых указываются действия, которые должен выполнять компьютер. Важное значение языка программирования подчёркивается тем фактом, что сама вычислительная машина может рассматриваться как аппаратный интерпретатор какого-нибудь конкретного языка, который называется машинным языком. Для обеспечения эффективной работы машины разработаны машинные языки, использование которых представляет известные трудностидля человека. Большинство пользователей не чувствуют этих неудобств благодаря наличию одного или нескольких языков, созданных для улучшения связи человека с машиной. Гибкость вычислительной машины проявляется в том, что она может исполнять программы-трансляторы (в общем случае онм называются компиляторами или интерпретаторами) для преобразования программ с языков, ориентированных на пользователей, в программы на машинном языке. (В свою очередь даже сами программы, игры, системные оболочки являются ни чем иным, как довольно простая программа-транслятор, которая по мере работы, или игры обращается при помощи своих команд к “компьютерным внутренностям и наружностям”, транслиуя свои команды в машинные языки. И всё это происходит в реальном времени.)

КОМПЬЮТЕР

Компью́тер (англ.computer - "вычислитель"), электро́нная вычисли́тельная маши́на (ЭВМ) - вычислительная машина, предназначенная для передачи, хранения и обработки информации.

Термин "компьютер" и аббревиатура "ЭВМ", принятая в русскоязычной научной литературе, не являются синонимами. Поскольку существовали механические вычислительные машины, сконструированные без применения электроники, то ЭВМ являются подмножеством компьютеров вообще. В настоящее время словосочетание "электронная вычислительная машина" почти вытеснено из бытового употребления. Аббревиатуру "ЭВМ" в основном используют как правовой термин в юридических документах, инженеры цифровой электроники, а также в историческом смысле - для обозначения компьютерной техники 1940-1980-х годов. Также "ЦВМ" - "цифровая вычислительная машина" в противовес "АВМ" - "аналоговая вычислительная машина".

При помощи вычислений компьютер способен обрабатывать информацию по определённому алгоритму. Любая задача для компьютера является последовательностью вычислений.

Физически компьютер может функционировать за счёт перемещения каких-либо механических частей, движения электронов, фотонов, квантовых частиц или за счёт использования эффектов любых других физических явлений.

Архитектура компьютеров может непосредственно моделировать решаемую проблему, максимально близко (в смысле математического описания) отражая исследуемые физические явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при моделировании дамб или плотин. Подобным образом сконструированные аналоговые компьютеры были обычны в 1960-х годах, однако сегодня стали достаточно редким явлением.

В большинстве современных компьютеров проблема сначала описывается в понятном им виде (при этом вся необходимая информация как правило представляется в двоичной форме - в виде единиц и нулей, хотя существовали и компьютеры на троичной системе счисления), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций, достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач, а также и

большинства задач по обработке информации, которые могут быть сведены к математическим. Было обнаружено, что компьютеры могут решить не любую математическую

задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких, как ламповые индикаторы, мониторы, принтеры, проекторы и т.

УСТРОЙСТВО КОМПЬЮТЕРА.

1. Монитор

2. Системный блок

3. Клавиатура

5. Аудиоколонки

1. Монитор (устройство), дисплей - устройство для показа изображений, порождаемых другими устройствами (например, компьютерами). Три закона современной мониторотехнике:

Одна из важнейших частей компьютера, и относиться к его выбору нужно серьезно. Кроме размера и качества изображения мониторы отличаются и по частотным характеристикам (максимальным поддерживаемым разрешениям и кадровым частотам). Впрочем, большинство популярных моделей имеют достаточно хорошие параметры, хотя разница в качестве изображения, конечно, есть. К хорошим недорогим маркам можно отнести Samsung, CTX, Samtron, LG, ViewSonic, Hyundai,. Более дорогие мониторы - Sony, Panasonic, NEC, Hitachi, MAG - действительно отличаются высоким уровнем качества, однако далеко не всегда превосходят более доступные модели. Для недорогих ПК рекомендуются мониторы с диагональю 15 дюймов, а для мощных ПК лучше подходят 17-дюймовые модели. От выбора монитора зависит не только качество изображения, но и здоровье работающего с ним человека. Наиболее четкое и контрастное изображение имеют мониторы с кинескопами типа Sony, Trinitron, или похожие на них LG Flatron, ViewSonic, SonicTron, Mitsubishi Diamondtron, NEC CromaClear. Однако цена у мониторов с такими кинескопами довольно высокая, а разрешающая способность по горизонтали не самая лучшая. Кинескопы другого типа - с теневой маской - стоят дешевле, но тоже имеют весьма качественное изображение. Для недорогого компьютера обычно приобретаются мониторы с диагональю 15". Для игрового ПК или работы с графикой лучше 17" модель. Мониторы большого размера - 19", 20" или 21" - используются в основном в сферах компьютерного дизайна и автоматизированного проектирования. Если хотите быть уверены в безопасности монитора, покупай те модели, соответствующие самому жесткому стандарту - TCO-99. Именно от монитора стоит планировать бюджет покупки. Системный блок дешевеет достаточно быстро (50% в год и более), а монитор обычно покупается надолго, и от него в большей степени зависит комфортность работы за компьютером и утомляемость. Качество изображения и технология - вот на что надо обратить особое внимание. Размер диагонали экрана должен быть не менее 17 дюймов в случае монитора на базе ЭЛТ (электроннолучевой трубки) и 15 дюймов в случае ЖК (LCD/ТFТ) - дисплея. ЖК-мониторы сейчас вполне доступны по цене. Они чуть меньше, чем традиционные ЭЛТ-мониторы, подходят для игр с динамичной трехмерной графикой (или требуют в этом случае мощных параметров компьютера, хотя современные модели уже стирают эту разницу), но значительно более комфортны для зрения. Под задачи, связанные с работой с мелкими деталями и изображениями (дизайн, 3D-моделирование, видеомонтаж), желательно брать монитор более 17 дюймов. Если же вы решите брать ЭЛТ-монитор, то рассматривайте только серьезных производителей, таких, например, как View Sonic, NEC, liyama, Mitsubishi, Nokia, Sony, CTX. В данном случае, вы платите не только за марку, но и за профессионализм производителя. Обязательно посмотрите на монитор, прежде чем его покупать. Он должен понравиться именно вашим глазам! Не покупайте монитор, основываясь исключительно на цифрах технических характеристик или рекомендациях.

2. Системный блок или Корпус - В корпусе современного компьютера сконцентрировано большое количество элементов, выделяющих тепло. По большому счету, тепло выделяет практически всё, так как любая работающая электронная схема рассеивает некоторую мощность. Однако есть элементы, которые являются весьма интенсивными источниками тепла. Это процессор, микросхемы на материнской плате и на видеокарте, элементы на плате жесткого диска, элементы блока питания и т.д. Давно прошли те времена, когда процессор мог работать без принудительного охлаждения. Уже стал привычным кулер на видеокарте, иногда он устанавливается также на северный мост чипсета и на жесткий диск. Современный корпус обычно имеет места для установки дополнительных вентиляторов, которые призваны продувать весь внутренний объем корпуса компьютера. Особенно остро проблема охлаждения стоит для компьютеров, насыщенных платами расширения, а также для компьютеров с "разогнанными" процессорами. Сами по себе корпуса не продаются отдельно, они поставляются в комплекте с блоком питания. Основная его функция - преобразовывать переменный ток высокого напряжения (110-230 V) в постоянный ток низкого напряжения (+/-12 V и +/-5 V). Выпускаются блоки питания мощностью 200 VA, 235 VA, 250 VA, 300 VA, 350 VA и т.д.

3. Клавиатура - Компьютер - интерактивное устройство, это значит, что для общения с ним необходимо периодически вводить в него данные, в ответ на которые он будет совершать какие-то действия. Без таких устройств, как мышь и клавиатура ПК бесполезен.

Клавиатуры существуют:

мультимедийные предоставляющие дополнительные возможности управления параметрами звука (громкость, баланс частот и пр.) и CD-ROM.

со встроенными функциями управления броузером Интернет, позволяющие получить доступ к основным пунктам меню (Избранное, Поиск, запуск броузера)

для любителей игр выпускаются клавиатуры с двухсторонним дублирование клавиш управления курсором (справа и слева. Иногда дублируется вся часть цифровой клавиатуры, которая традиционно располагается справа)

беспроводные клавиатуры, позволяющие работать в удалении от ПК на расстояние до 3-4 метров.

Основными производителями клавиатур на рынке являются фирмы MicroSoft, Chickone, Genius, BTC и Cherry, обладающие, пожалуй, самым большим модельным рядом. Цена клавиатуры в зависимости от фирмы производителя, исполнения и функциональной нагрузкой лежит в пределах 5,5 - 65 у. е.

4. Мыши - это вредные грызуны, но есть и другие мыши - манипуляторы, которые передвигают курсор на экране монитора, выполняют выделение объектов и еще много различных действий. На сегодняшний день существует огромное количество различных компьютерных мышей. Они отличаются друг от друга размером, дизайном, количеством кнопок, формой, способом подключения и т.д. Старые модели мышей подключались к компьютеру через СОМ-порт, современные же мыши подключаются к компьютеру через разъемы PS/2 или USB разъемы.

Прежде всего мыши бывают:

механические;

оптические и;

радио-мыши. Внутри механической мышки резиновый шарик касается поверхности стола и вращает горизонтальный и вертикальный валики, тем самым дает информацию о перемещении курсора. Для таких мышек необходим коврик. В оптической мыши используется световой излучатель. Для них коврик не нужен, они работают на любой ровной поверхности. Радио-мышки соединяются с компьютером посредством радио-датчика, который подключен к порту компьютера. С помощью таких мышек можно работать с компьютером на некотором отдалении от него, скажем лежа на диване. Но существенным недостатком радио-мышей является постоянная смена батареек. Мышка снабжена минимум двумя кнопками. Современные мышки имеют три и даже пять кнопок, вдобавок на таких моделях есть один или два колесика - скрол, с помощью которых удобно просматривать документы. Чтобы сделать выделение фрагмента достаточно выполнить один щелчок левой кнгопкой мыши. Для запуска программ на выполнение или открытие папок необходимо сделать двойной щелчок, т.е. дважды быстро щелкнуть левой кнопкой мыши. Еще можно выполнить двукратный щелчок, т.е. щелкнуть один раз левой кнопкой мыши на значек и через пару секунд второй раз или нажать клавишу F2, это позволяет переименовать имя файла или папки. Можно выделить несколько значков одновременно, для этого надо щелкнуть левой клавишей мыши в стороне от значка и, удерживая левую кнопку протянуть указатель мыши так, чтобы захватить выделяемые значки. Все, что вы поймалы в рамку выделится и с ними можно выполнить различные действия - скопировать, запустить, переместить или удалить. Чтобы убрать выделение достатчно щелкнуть на свободное место. Любой значек можно с помощью мышки перетащить в другое место для этого надо щелкнуть на объект один раз и, удерживая левую кнопку мыши перенести его в другое место и отпустить клавишу, значек там и останется. Такой способ называется drag-and-drop (перетащить и бросить). Если перемещать значки и удерживать при этом клавишу Ctrl, то получим копии значков. Щелчок правой клавишей мыши открывает контекстное меню объекта - окно, в котором предоставлен список для выбора определенной команды. У разных объектов разные контекстные меню, но у всех есть строка Свойства (Properties), из которого можно многое узнать об объекте.

5. Акустика - компьютерные колонки - отвечают за вывод звуковых сигналов.

Вот и все комплектующие компьютера.

Компьютер изнутри.

Компоненты системного блока используются для обработки и хранения информации. На рисунке изображен типичный компьютер изнутри. Давайте разбираться, что же находится в "черном ящике" (ну, или сером, или белом - смотря у кого какой цвет корпуса).

Самое главное - материнская плата , она изображена под номером 1. Номер 2 - это вентилятор процессора. Под вентилятором виден радиатор, а уже под радиатором - сам процессор. Без снятия вентилятора и радиатора процессор вы не увидите.

Видеокарта изображена под номером 3. Номер 4 - жесткие диски, на рисунке их два. Номер 5 - это привод для чтения (записи) оптических дисков (CD, DVD). По внешнему виду определить, какой именно привод, нельзя, нужно читать, что написано на наклейке сверху или же на передней панели привода. Жесткие диски и привод CD/DVD подключаются к материнской плате с помощью шлейфов, изображенных под номером 6. Слоты расширения, в которые устанавливаются дополнительные платы расширения, изображены под номером 7. Номер 8 - это блок питания.

Винчестер или проще говоря "винт" (HDD читается как "хард диск драйв") - это накопитель на жестких магнитных дисках (НЖМД) в нем хранится вся информация с которой вы работаете, установленные программы, документы, в том числе и операционная система, которая загружает собственно ваш компьютер. Только, пожалуйста, не путайте компьютерные винчестеры вот с этими винчестерами. Именно с винта информация поступает в оперативную память, но в отличие от памяти, на винчестере стере данные сохраняются даже при выключении компьютера.

Жесткий диск (hdd, hard disk drive) - используется для хранения постоянных данных (ведь содержимое оперативной памяти стирается при выключении питания).

Материнская плата (mother board) - самая главная часть компьютера, к которой подключаются все остальные его компоненты. Продолжим о материнских платах:

материнские платы производят различные производители, (китайцы иногда делают компьютеры не хуже чем европейцы) из которых можно выделить: - GigaByte, Microstar, ASUS, Intel и т.д. Иногда, покупая бренд, мы переплачиваем за имя, но получаем качество, хотя не всегда. Я лично ничего не имею против всех перечисленных производителей - для большинства людей абсолютно параллельно как карта влияет на разгон процессора, но у меня были материнские платы GigaByte, Apox на одном компьютер глючила, а на другом работала нормально, так же неплохо работает ASUS. Если вы будете покупать, определитесь с брендом, а потом смотрите подходящую по характеристикам карту, в магазине, кстати, может не оказаться материнских плат нужного вам производителя.

Сокет (Socket) - это разъем под процессор. В материнскую плату может быть вставлен процессор с определенными характеристиками, т.е. скорее всего, вы не сможете взять процессор со старого компьютер знакомого и вставить его в свою материнскую плату, даже если марка процессора походит - проблема может крыться в том, что не подходит разъем. Дело в том, что под процессоры выпускают материнские платы, соответствующие по частотам и т.п. Например, материнская плата Socket 775 предназначена для работы с процессорами s775 Intel, а не с процессорами s1366 Intel, или процессорами AMD.

Интегрированные устройства. В самом начале все плевались и не хотели покупать материнские платы с интегрированным звуком, видео, и т.п., а сейчас вполне нормально, производители материнских плат добились своего, отношение поменялось, даже для офиса и работы с текстом самый бюджетный вариант. Если вы покупаете себе компьютер для игр, если у вас есть дети или вы сами смотрите как играют другие, то вам нужно покупать материнскую плату и видеокарту отдельно. Переплачивать, покупая интегрированную в материнскую плату видеокарту, и видекорату отдельно, я бы не советовал. Звук вполне нормально работает и интегрированный и если вы не обладаете тончайшим слухом, то разницы вы не заметите.

Характеристики. Каждая материнская плата обладает своими характеристиками - тип поддерживаемой памяти - например: DDR2 DIMM, 667 - 1066 МГц, Max объем оперативной памяти, гнездо процессора, поддержка типов процессоров, поддержка UDMA/100, Serial ATA, частота шины - например: 800/1066/1333 МГц, формат платы.

Слоты, порты и их характеристики. Для некоторых внутренних устройств предусмотрены специальные слоты, ведь проще вставить устройство в слот, чем устройство выпаивать. Например в материнской плате есть слот для видеокарты PCI Express (обратите внимание на добавление - x16, на этот показатель будете смотреть когда станете покупать видеокарту). Слоты PCI предназначены для добавления встраиваемого модема, адаптеров, звуковой карты, сетевой карты и т.п. Порты - например: 4xUSB 2. 0, 1xCOM, LPT, Ethernet, PS/2 (клавиатура), PS/2 (мышь).

Процессор (processor, CPU, central processing unit) - производит обработку данных.

Оперативная память (ram, random access memory) - используется для хранения выполняемых программ и данных, обрабатываемых процессором. Самым главным элементом в системном блоке, можно сказать его "мозгом", является микропроцессор - это маленькая электронная схема на материнской плате, которая выполняет все вычисления и обработку информации. Микропроцессор может выполнить сотни операций и делает это со скоростью в несколько десятков или даже сотен миллионов операций в секунду. Процессор умеет считать, он переводит всю обрабатываемую информацию, будь-то текст, графика, музыка, видео - в цифровую, т.к. технически ему удобнее работать с цифрами. На сегодняшний день есть две самые популярные фирмы-изготовители процессоров: Intel с процессором Pentium (упрощенный вариант Celeron) и AMD с процессором Athlon (упрощенный вариант Sempron). Параметром быстродействия процессора является тактовая частота, чем она выше, тем быстрее работает компьютер.

Кроме обычных процессоров выпускаются также двухядерные, т.е. в одной микросхеме находятся сразу два процессора, которые работают параллельно и тем самым повышают скорость работы компьютера, есть более мощные - четырехядерные процессоры

Корпус (case) - "рама" компьютера, в которую устанавливаются все комплектующие.

Блок питания (power unit) - обычно поставляется вместе с корпусом, но является отдельной частью компьютера. Подает питание на материнскую плату и другие компоненты компьютера.

Дисковод для гибких дисков (FDD, floppy disk drive) - на современных компьютерах часто не устанавливают FDD, но, возможно, вы все-таки захотите его иметь в комплектации своей машины. Дискета (FDD - Floppy Disk Drive) сейчас 3,5 дюйма - гибкий магнитный диск (ГМД), которая вставляется в дисковод - накопитель на гибких магнитных дисках (НГМД) для считывания с нее информации. Эти дискеты намного прочнее своих предшественников 5,25", рабочая область для считывания информации закрывается пластиной. Дискета представляет собой гибкую пластиковую пластину, защищенную пластмассовым корпусом. Для защиты от случайной перезаписи служит окошечко снизу: в открытом положении информация защищена, разрешено только чтение, а в закрытом положении все разрешено, т.е. перезапись, редактирование и т.д.

Различают такие технологии как CD и DVD: среди CD технологии есть два основных формата CD-R и CD-RW. На компакт-диск CD-R информация записывается только один раз и после это диск используется для чтения, но не для записи. Формат же CD-RW дает возможность стирать данные и снова записывать до 1000 раз. Емкость таких дисков до 800 МБ. Аналогично DVD-R и DVD-RW, емкость этих дисков уже 4,7 ГБ, на них можно записать несколько полнометражных фильмов. Есть двухслойные DVD диски, емкость которых достигает 17 ГБ.

Для чтения таких компакт-дисков предназначен дисковод CD-ROM и DVD -ROM. Привод cd/DVD - целесообразно приобрести пишущий DVD-привод, хотя можно и сэкономить, поставив на ПК комбинированный (combo) привод, умеющий читать и записывать CD-диски и только читать DVD-диски.

Видеокарта (video card) - отвечает за вывод информации на монитор (дисплей). В некоторых случаях может быть встроенной в материнскую плату.

Звуковая карта (sound card) - используется для воспроизведения звука, обычно встроена в материнскую плату.

Сетевая карта (network card) - используется для подключения к локальной сети, обычно встроена в материнскую плату. На современных компьютерах имеются сетевые платы, позволяющие подключаться к сети стандарта Fast Ethernet/Gigabit Ethernet (скорость 100/1000 Мб/с).

Виды памяти. Память компьютера используется на трёх уровнях:

постоянная;

основная (или оперативная);

Постоянная память ПЗУ - постоянное запоминающее устройство хранит информацию базовой системы ввода-вывода, ее использует только процессор для своих нужд. Оперативная память ОЗУ - оперативное запоминающее устройство предназначена для кратковременного хранения информации. Из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты и хранит их там. Память называется опреративной, потому что работает очень быстро, но при выключении компьютера стирается. Она представляет собой плоские прямоугольные пластины. Объем памяти на сегодняшний день от 256 МБ до 1 ГБ и выше. Чем больше памяти, тем устойчивее работает ваш компьютер и позволяет запускать одновременно несколько больших программ. Но если памяти мало, то машина работает медленно, иногда "зависает" - тормозит, программы мешают друг другу и могут вообще не работать.

Внешняя память физически отделена от процессора и предназначена для долговременного хранения какого угодно количества информации, входит в состав компьютера в виде отдельных периферийных устройств.

Монитор (monitor, display) - используется для отображения информации, подключается к видеокарте. Компьютер может прекрасно работать и без монитора, если он не предназначен для работы с пользователем. Но такие компьютеры мы рассматривать не будем.

Клавиатура (keyboard) - устройство для ввода данных.

Мышь (mouse) - без манипулятора мышь работать с современным компьютером очень неудобно, поэтому мышь (или другое указательное устройство, например TouchPad на ноутбуках) является обязательным компонентом компьютера. Задняя панель компьютера.

Блок питания

В верхнем левом углу системного блока находится блок питания . Поскольку все компоненты в системном блоке питаются постоянными токами с напряжениями 5, 12 или 3,3 В, блок питания представляет собой, по сути, выпрямитель и набор трансформаторов.

"Техническое обслуживание средств вычислительной техники и компьютерных сетей"

Выпускники данной специальности получают знания и навыки в области технического обслуживания средств вычислительной техники (СВТ) и компьютерных сетей; обеспечения работоспособности, обнаружения и устранения неисправности в СВТ и компьютерных сетях; составлении программы профилактического обслуживания СВТ; производства установки, адаптации, сопровождения и эксплуатации типового программного обеспечения; создания инсталляционных пакетов для установки разрабатываемого программного обеспечения. Т.е. специалист данного направления сможет составить, настроить и отремонтировать компьютерную технику и компьютерные сети, а также использовать в своей деятельности типовое программное обеспечение.

История счётных устройств насчитывает много веков. Ниже в хронологическом порядке приводятся некоторые наиболее значимые события этой истории, их даты и имена участников. Около 500 г. н.э. Изобретение счётов (абака) - устройства, состоящего из набора костяшек, нанизанных на стержни.

1614 г. - шотландец Джон Непер изобрёл логарифмы. Вскоре после этого Р. Биссакар создал логарифмическую линейку.

1642 г. - французский ученый Блез Паскаль приступил к созданию арифметической машины - механического устройства с шестернями, колёсами, зубчатыми рейками и т.п. Она умела "запоминать" числа и выполнять элементарные арифметические операции.

1804 г. - французский инженер Жаккар изобрёл перфокарты для управления автоматическим ткацким станком, способным воспроизводить сложнейшие узоры. Работа станка программировалась колодой перфокарт, каждая из которых управляла одним ходом челнока.

1834 г. - английский ученый Чарльз Бэббидж составил проект "аналитической" машины, в которую входили: устройства ввода и вывода информации, запоминающее устройство для хранения чисел, устройство, способное выполнять арифметические операции, и устройство, управляющее последовательностью действий машины. Команды вводились с помощью перфокарт. Проект не был реализован.

1930 г. - профессор Массачусетского технологического института (МТИ) Ванневар Буш построил дифференциальный анализатор, с появлением которого связывают начало современной компьютерной эры. Это была первая машина, способная решать сложные дифференциальные уравнения, которые позволяли предсказывать поведение таких движущихся объектов, как самолет, или действие силовых полей, например, гравитационного поля.

1936 г. - английский математик Алан Тьюринг и независимо от него Э. Пост выдвинули и разработали концепцию абстрактной вычислительной машины. Они доказали принципиальную возможность решения автоматами любой проблемы при условии возможности её алгоритмизации.

1938 г. - немецкий инженер Конрад Цузе построил первый чисто механический компьютер.



1938 г. - а мериканский математик и инженер Клод Шеннон показал возможность применения аппарата математической логики для синтеза и анализа релейно-контактных переключательных схем.

1939 г. - американец болгарского происхождения профессор физики Джон Атанасофф создал прототип вычислительной машины на базе двоичных элементов.

1941 г. - Конрад Цузе сконструировал первый универсальный компьютер на электромеханических элементах. Он работал с двоичными числами и использовал представление чисел с плавающей запятой.

1944 г. - под руководством американского математика Говарда Айкена создана автоматическая вычислительная машина "Марк-1" с программным управлением. Она была построена на электромеханических реле, а программа обработки данных вводилась с перфоленты.

1945 г. - Джон фон Нейман в отчёте "Предварительный доклад о машине Эдвак" сформулировал основные принципы работы и компоненты современных компьютеров.

1946 г. - американцы Дж. Эккерт и Дж. Моучли сконструировали первый электронный цифровой компьютер "Эниак" (Electronic Numerical Integrator and Computer). Машина имела 20 тысяч электронных ламп и 1,5 тысячи реле. Она работала в тысячу раз быстрее, чем "Марк-1", выполняя за одну секунду 300 умножений или 5000 сложений.

1948 г. - в американской фирме Bell Laboratories физики Уильям Шокли, Уолтер Браттейн и Джон Бардин создали транзистор. За это достижение им была присуждена Нобелевская премия.

1949 г. - в Англии под руководством Мориса Уилкса построен первый в мире компьютер с хранимой в памяти программой EDSAC.

1951 г. - в Киеве построен первый в континентальной Европе компьютер МЭСМ (малая электронная счетная машина), имеющий 600 электронных ламп. Создатель С.А. Лебедев.

1951-1955 гг. - благодаря деятельности советских ученых С.А. Лебедева, М.В. Келдыша, М.А. Лаврентьева, И.С. Брука, М.А. Карцева, Б.И. Рамеева, В.С. Антонова, А.Н. Невского, Б.И. Буркова и руководимых ими коллективов Советский Союз вырвался в число лидеров вычислительной техники, что позволило в короткие сроки решить важные научно-технические задачи овладения ядерной энергией и исследования Космоса.

1952 г. - под руководством С.А. Лебедева в Москве построен компьютер БЭСМ-1 (большая электронная счетная машина) - на то время самая производительная машина в Европе и одна из лучших в мире.

1953 г. - Джей Форрестер реализовал оперативную память на магнитных сердечниках (сore memory), которая существенно удешевила компьютеры и увеличила их быстродействие. Память на магнитных сердечниках широко использовалась до начала 70-х годов. На смену ей пришла память на полупроводниковых элементах.

1955-1959 гг. - советские ученые А.А. Ляпунов, С.С. Камынин, Э.З. Любимский, А.П. Ершов, Л.Н. Королев, В.М. Курочкин, М.Р. Шура-Бура и др. создали "программирующие программы" - прообразы трансляторов. В.В. Мартынюк создал систему символьного кодирования - средство ускорения разработки и отладки программ.

1955-1959 гг. - заложен фундамент теории программирования (А.А. Ляпунов, Ю.И. Янов, А.А. Марков, Л.А. Калужин) и численных методов (В.М. Глушков, А.А. Самарский, А.Н. Тихонов). Моделируются схемы механизма мышления и процессов генетики, алгоритмы диагностики медицинских заболеваний (А.А. Ляпунов, Б.В. Гнеденко, Н.М. Амосов, А.Г. Ивахненко, В.А. Ковалевский и др.).

1958 г. - Джек Килби из фирмы Texas Instruments создал первую интегральную схему.

1957 г. - первое сообщение о языке Фортран (Джон Бэкус).

1957 г. - американской фирмой NCR создан первый компьютер на транзисторах.

1959 г. - под руководством С.А. Лебедева создана машина БЭСМ-2 производительностью 10 тыс. опер./с. С ее применением связаны расчеты запусков космических ракет и первых в мире искусственных спутников Земли.

1959 г. - создана машина М-20, главный конструктор С.А. Лебедев. Для своего времени одна из самых быстродействующих в мире (20 тыс. опер./с.). На этой машине было решено большинство теоретических и прикладных задач, связанных с развитием самых передовых областей науки и техники того времени. На основе М-20 была создана уникальная многопроцессорная М-40 - самая быстродействующая ЭВМ того времени в мире (40 тыс. опер./с.). На смену М-20 пришли полупроводниковые БЭСМ-4 и М-220 (200 тыс. опер./с.).

1959 г. - первое сообщение о языке Алгол, который надолго стал стандартом в области языков программирования.

1961 г. - фирма IBM Deutschland реализовала подключение компьютера к телефонной линии с помощью модема.

1964 г. - начат выпуск семейства машин третьего поколения - IBM/360.

1967 г. - под руководством С.А. Лебедева организован крупно-серийный выпуск шедевра отечественной вычислительной техники - миллионника БЭСМ-6, - самой быстродействующей машины в мире. За ним последовал "Эльбрус" - ЭВМ нового типа, производительностью 10 млн. опер./с.

1968 г. - основана фирма Intel, впоследствии ставшая признанным лидером в области производства микропроцессоров и других компьютерных интегральных схем.

1970 г. Швейцарец Никлаус Вирт разработал язык Паскаль.

1971 г. Эдвард Хофф разработал микропроцессор Intel-4004, состоящий из 2250 транзисторов, размещённых в кристалле размером не больше шляпки гвоздя. Этот микропроцессор стал поистине революционным изобретением, открывшем путь к созданию искусственных интеллектуальных систем вообще и персонального компьютера в частности.

1973 г. - фирма IBM (International Business Machines Corporation) сконструировала первый жёсткий диск типа "винчестер".

1974 г. - фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами.

1976 г. - студенты Стив Возняк и Стив Джобс, устроив мастерскую в гараже, реализовали компьютер Apple-1, положив начало корпорации Apple.

1978 г. - фирма Intel выпустила микропроцессор 8086.

1979 г. - фирма Intel выпустила микропроцессор 8088. Корпорация IBM приобрела крупную партию этих процессоров для вновь образованного подразделения по разработке и производству персональных компьютеров.

1980 г. - японские компании Sharp, Sanyo, Panasonic, Casio и американская фирма Tandy вынесли на рынок первый карманный компьютер, обладающий всеми основными свойствами больших компьютеров.

1981 г. - фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.

1982 г. - фирма Intel выпустила микропроцессор 80286, содержащий 134 000 транзисторов и способный выполнять любые программы, написанные для его предшественников. С тех пор такая программная совместимость остается отличительным признаком семейства микропроцессоров Intel.

1984 г. - корпорация Apple Computer выпустила компьютер Macintosh на 32-разрядном процессоре Motorola 68000 - первую модель знаменитого впоследствии семейства Macintosh c удобной для пользователя операционной системой, развитыми графическими возможностями, намного превосходящими в то время те, которыми обладали стандартные IBM-совместимые ПК с MS-DOS. Эти компьютеры быстро приобрели миллионы поклонников и стали вычислительной платформой для целых отраслей, таких например, как издательское дело и образование.

1985 г. - фирма Intel выпустила микропроцессор 80386, насчитывающий уже 275000 транзисторов. Этот 32-разрядный "многозадачный" процессор обеспечивал возможность одновременного выполнения нескольких программ.

1989 г. - Фирма Intel выпустила микропроцессор Intel 486 DX. Поколение процессоров i486 ознаменовало переход от работы на компьютере через командную строку к режиму "укажи и щелкни". Intel 486 стал первым микропроцессором со встроенным математическим сопроцессором, который существенно ускорил обработку данных, выполняя сложные математические действия вместо центрального процессора. Количество транзисторов - 1,2 млн. 1990 г. - выпуск и ввод в эксплуатацию векторно-конвейерной суперЭВМ "Эльбрус 3.1". Разработчики - Г.Г. Рябов, А.А. Соколов, А.Ю. Бяков. Производительность в однопроцессорном варианте - 400 мегафлопов.

1993 г. - фирма Intel выпустила микропроцессор Pentium, который научил компьютеры работать с атрибутами "реального мира" - такими, как звук, голосовая и письменная речь, фотоизображения.

2000 г. - появление 64-разрядных микропроцессоров Itanium и AMD.

Первое поколение

К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Электронная лампа Компьютер "Эниак".

Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства.

Быстродействие порядка 10-20 тысяч операций в секунду.

Но это только техническая сторона. Очень важна и другая - способы использования компьютеров, стиль программирования, особенности математического обеспечения.

Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

Эти проблемы начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

Отечественные машины первого поколения: МЭСМ (малая электронная счётная машина), БЭСМ, Стрела, Урал, М-20.


ЭВМ "Урал"

Второе поколение

Второе поколение компьютерной техники - машины, сконструиро-ванные примерно в 1955-65 гг. Характеризуются использованием в них как электронных ламп, так и дискретных транзисторных логических элементов. Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.

БЭСМ-6. Транзистор

Быстродействие - до сотен тысяч операций в секунду, ёмкость памяти - до нескольких десятков тысяч слов.

Появились так называемые языки высокого уровня, средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде.

Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами, переводят программу с языка высокого уровня на машинный язык.

Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

Операционная система - важнейшая часть программного обеспечения компьютера, предназначенная для автоматизации планирования и организации процесса обработки программ, ввода-вывода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных операций обслуживания.

Таким образом, операционная система является программным расширением устройства управления компьютера.

Для некоторых машин второго поколения уже были созданы операционные системы с ограниченными возможностями.

Память на магнитных сердечниках

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение

Машины третьего поколения созданы примерно после 60-x годов. Поскольку процесс создания компьютерной техники шел непрерывно, и в нём участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда "поколение" начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры.

Интегральная схема

Компьютер IBM-360

Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

Четвертое поколение

Четвёртое поколение - это теперешнее поколение компьютерной техники, разработанное после 1970 года.

Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвёртого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой ёмкостью в десятки мегабайт.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Для них характерны:

1) применение персональных компьютеров; 2)телекоммуникационная обработка данных; 3)компьютерные сети; 4)широкое применение систем управления базами данных; 5)элементы интеллектуального поведения систем обработки данных и устройств.

Какими должны быть компьютеры пятого поколения?

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография).

Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний.

Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином "интеллектуальный интерфейс". Его задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

← Вернуться

×
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:
Я уже подписан на сообщество «rmgvozdi.ru»