Укороченные антенны кв диапазона. Три КВ антенны. Схема, описание. W3DZZ с трапами из коаксиального кабеля

Подписаться
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:

Предлагаемая ниже модификация хорошо известной антенны позволит перекрыть весь коротковолновый радиолюбительский диапазон частот, немного проигрывая полуволновому диполю в диапазоне 160 метров (0.5дБ на ближних и около 1 дБ на дальних трассах). При точном исполнении, антенна работает сразу и в настройке не нуждается. Отмечена интересная особенность антенны: на нее не воспринимаются статические помехи, по сравнению с диапазонным полуволновым диполем прием очень комфортный. Хорошо прослушиваются слабые DX станции, особенно на НЧ диапазонах. Длительная эксплуатация антенны (почти 8 лет на момент публикации, ред.) позволила отнести ее к малошумным приемным антеннам. В остальном, на мой взгляде» по эффективности она не уступает диапазонной полуволновой антенне: диполю или Inv. Vee на каждом из диапазонов от 3.5 до 28МГц. Еще одно наблюдение, основанное на отзывах дальних корреспондентов, при передаче отсутствуют глубокие QSB. Из проделанных мной 23 вариантов модификаций антенны, приводимый здесь, заслуживает наибольшего внимания и может быть рекомендован для массового повторения. Все размеры антенно-фидерной системы рассчитаны и точно выверены практически.


Полотно антенны

Размеры вибратора приведены на рисунке выше. Обе половины вибратора симметричны, лишняя длина «внутреннего угла» урезается по месту, там же крепится небольшая изолированная площадка для соединения с питающей линией. Балластный резистор 2400м, пленочный (зеленого цвета), 10Вт. Можно использовать любое другое той же мощности, но обязательно безиндукцинное. Медный провод в изоляции, сечением 2.5мм. Распорки - деревянная рейка сечением 1х1см с лаковым покрытием. Расстояние между отверстиями 87см. Растяжки - капроновый шнур.

Воздушная линия питания

Медный провод ПВ-1, сечением 1мм, распорки из винипласта. Расстояние меаду проводниками 7.5см. Длина линии 11 метров.

Авторский вариант установки

Используется металлическая, заземленная снизу, мачта. Установлена на крыше 5-этажного дома. Высота мачты 8 метров, труба диаметром 50мм. Концы антенны располагаются на расстоянии 2-х метров от крыши. Сердечник согласующего трансформатора (ШПТР) вделан из «строчни ка» ТВС-90ЛЦ5. Катушки удаляются, сам сердечник склеивается «супермоментом» до монолитного состояния и проматывается 3-мя слоями лакоткани. Намотка ведется в два провода без скрутки. Трансформатор содержит 16 витков одножильного изолированного медного провода диаметром 1мм. Поскольку трансформатор имеет квадратную (или прямоугольную) форму, то на каждую из 4-х сторон наматывается по 4 пары витков - наилучший вариант распределения тока. КСВ во всем диапазоне от 1.1 до 1.4. ШПТР помещается в хорошо пропаянный с оплеткой фидера экран из жести. С внутренней стороны к нему надежно подпаивается средний вывод обмотки трансформатора.После сборки и установки антенна будет работать практически в любых условиях: располагаясь низко над землей или над крышей дома. Отмечен низкий уровень TVI (помех телевидению), что может заинтересовать сельских радиолюбителей или дачников.

Антенны Яги с рамочным вибратором, расположенным в плоскости антенны называются LFA Yagi (Loop Feed Array Yagi) и характеризуются большим, чем у обычных Яги рабочим диапазоном частот. Одной из популярных LFA Yagi является 5-элементная конструкция Джастина Джонсона (G3KSC) на 6-метровый диапазон.

Схема антенны, расстояния между элементами и размеры элементов, показаны ниже в таблице и на чертеже.

Размеры элементов, расстояний до рефлектора и диаметров алюминиевых трубок, из которых выполнены элементы согласно таблицы: Элементы установлены на траверсе длиной около 4,3 м из квадратного алюминиевого профиля сечением 90?30 мм через изоляционные переходные планки. Вибратор питается по 50-омному коаксиальному кабелю через симметрирующий трансформатор1:1.

Настройка антенны по минимальному КСВ в середине диапазона производится путем подбора положения торцевых П-образных частей вибратора из трубок диаметром 10 мм. Изменять положение этих вставок нужно симметрично, т.е., если правую вставку выдвинули на 1 см, то и левую нужно выдвинуть на столько же.

Антенна имеет следующие характеристики: максимальное усиление 10,41 дБи на 50,150 МГц, максимальное отношение фронт/тыл 32.79 дБ, рабочий диапазон частот 50,0-50,7 МГц по уровню КСВ=1,1

"Prakticka elektronik"

КСВ-метр на полосковых линиях

Широко известные из радиолюбительской литературы КСВ-метры выполнены с использованием направленных ответвителей и представляют собой однослойную катушку или ферритовый кольцевой сердечник с несколькими витками провода. Указанные устройства имеют ряд недостатков, основным из которых является то, что при измерении больших мощностей появляется высокочастотная «наводка» в измерительной цепи, требующая дополнительных затрат и усилий по экранировке детекторной части КСВ-метра для уменьшения погрешности измерений, а при формальном отношении радиолюбителя к изготовлению прибора, КСВ-метр может стать причиной изменения волнового сопротивления фидерной линии в зависимости от частоты. Предлагаемый вниманию КСВ-метр на основе полосковых направленных ответвителей лишён подобных недостатков, конструктивно выполнен в виде отдельного самостоятельного прибора и позволяет определить отношение прямой и отражённой волн в цепи антенны при подводимой мощности до 200 Вт в частотном диапазоне 1…50 МГц при волновом сопротивлении фидерной линии 50 Ом. Если требуется иметь только индикатор выходной мощности передатчика или контролировать ток антенны, можно воспользоваться таким устройством: При измерении КСВ в линиях с волновым сопротивлением отличным от 50 Ом, значения резисторов R1 и R2 следует изменить до величины волнового сопротивления измеряемой линии.

Конструкция КСВ-метра

КСВ-метр выполнен на плате из двустороннего фольгированного фторопласта толщиной 2 мм. В качестве замены возможно использование двусторонннего стеклотекстолита.

Линия L2 выполнена на тыльной стороне платы и показана прерывистой линией. Её размеры 11?70 мм. В отверстия линии L2 под разъёмы XS1 и XS2 вставлены пистоны, которые развальцованы и пропаяны вместе с L2. Общая шина с обеих сторон платы имеет одинаковую конфигурацию и на схеме платы заштрихована. В углах платы просверлены отверстия, в которые вставлены отрезки провода диаметром 2 мм, пропаянные с обеих сторон общей шины. Линии L1 и L3 расположены с лицевой стороны платы и имеют размеры: прямой участок 2?20 мм, расстояние между ними 4 мм и расположены симметрично продольной оси линии L2. Смещение между ними вдоль продольной оси L2 -10 мм. Все радиоэлементы расположены со стороны полосковых линий L1 и L2 и припаяны внахлёст непосредственно к печатным проводникам платы КСВ-метра. Печатные проводники платы следует посеребрить. Собранная плата припаивается непосредственно к контактам разъёмов XS1 и XS2. Применение дополнительных соединительных проводников или коаксиального кабеля недопустимо. Готовый КСВ-метр помещают в коробку из немагнитного материала толщиной 3…4 мм. Общую шину платы КСВ-метра, корпуса прибора и разъёмов соединяют между собой электрически. Отсчет КСВ производят следующим образом: в поло- жениии S1 «Прямая» с помощью R3 устанавливают стрелку микроамперметра на максимальное значение (100 мкА) и переведя S1 в «Обратная», отсчитывают значение КСВ. При этом показанию прибора 0 мкА соответствует КСВ 1; 10 мкА - КСВ 1,22; 20 мкА - КСВ 1,5; 30 мкА - КСВ 1,85; 40 мкА - КСВ 2,33; 50 мкА - КСВ 3; 60 мкА - КСВ 4; 70 мкА - КСВ 5,67; 80 мкА - 9; 90 мкА - КСВ 19.

Девятидиапазонная КВ антенна

Антенна представляет собой разновидность известной многодиапазонной антенны «WINDOM», у которого точка питания смещена от центра. При этом входное сопротивление антенны в нескольких любительских KB диапазонах составляет примерно 300 Ом,
что позволяет использовать в качестве фидера и одиночный провод, и двухпроводную линию с соответствующим волновым сопротивлением, и, наконец, коаксиальный кабель, подключаемый через согласующий трансформатор. Для того чтобы антенна работала во всех девяти любительских KB диапазонах (1.8; 3,5; 7; 10; 14; 18; 21; 24 и 28 МГц), параллельно включены по существу, две антенны «WINDOM» (см. выше рис. а): одна с общей длиной около 78 м (l/2 для диапазона 1,8 МГц), а другая с общей длиной примерно 14 м (l/2 для диапазона 10 МГц и l для диапазона 21 МГц). Оба излучателя питаются от одного коаксиального кабеля с волновым сопротивлением 50 Ом. Согласующий трансформатор имеет коэффициент трансформации сопротивления 1:6.

Примерное расположение излучателей антенны в плане показано на рис.б.

При установке антенны на высоте 8 м над хорошо проводящей «землей» коэффициент стоячей волны в диапазоне 1.8 МГц не превышал 1,3, в диапазонах 3,5, 14. 21, 24 и 28 МГц - 1.5, в диапазонах 7. 10 и 18 МГц - 1,2. В диапазонах 1,8, 3,5 МГц и до некоторой степени в диапазоне 7 МГц при высоте подвески 8 м диполь, как известно, излучает в основном под большими углами к горизонту. Следовательно, в этом случае антенна будет эффективна лишь при проведении ближних связей (до 1500 км).

Схема подключения обмоток согласующего трансформатора для получения коэффициента трансформации 1:6 показана на рис.в.

Обмотки I и II имеют одинаковое число витков (как и в обычном трансформаторе с коэффициентом трансформации 1:4). Если общее число витков этих обмоток (а оно зависит в первую очередь от размеров магнитопровода и его начальной магнитной проницаемости) равно n1, то число витков n2 от точки соединения обмоток I и II до отвода рассчитывают по формуле n2=0.82n1.т

Горизонтальные рамки весьма популярны. Рик Роджерс (KI8GX) провел эксперименты с «наклонной рамкой», крепящейся к одной мачте.

Для установки варианта «наклонной рамки» с периметром 41,5м, необходима мачта высотой 10…12 метров и вспомогательная опора высотой около двух метров. К этим мачтам крепятся противоположные углы рамки, которая имеет форму квадрата. Расстояние между мачтами выбирают таким, чтобы угол наклона рамки по отношению к земле был в пределах 30…45°.Точка питания рамки расположена в верхнем углу квадрата. Питается рамка коаксиальным кабелем с волновым сопротивлением 50 Ом.По измерениям KI8GX в этом варианте рамка имела КСВ=1,2 (минимум) на частоте 7200 кГц, КСВ=1,5 (довольно «тупой» минимум) на частотах выше 14100 кГц, КСВ=2,3 во всем диапазоне 21 МГц, КСВ=1,5 (минимум) на частоте 28400 кГц. На краях диапазонов значение КСВ не превышало 2,5. По данным автора некоторое увеличение длины рамки сместит минимумы ближе к телеграфным участкам и позволит получить КСВ меньше двух в пределах всех рабочих диапазонов (кроме 21 МГц).

QST №4 2002 год

Вертикальная антенна на 10,15 метров

Несложную комбинированную вертикальную антенну для диапазонов 10 и 15 м можно изготовить как для работы в стационарных условиях, так и для загородных выездов. Антенна представляет собой вертикальный излучатель (рис.1) с заграждающим фильтром (трапом) и двумя резонансными противовесами. Трап настроен на выбранную частоту в диапазоне 10 м, поэтому в этом диапазоне излучателем является элемент L1 (см. рисунок). В диапазоне 15м катушка индуктивности трапа является удлиняющей и совместно с элементом L2 (см. рисунок) доводит общую длину излучателя до 1/4 длины волны на диапазоне 15 м.Элементы излучателя можно изготовить из труб (в стационарной антенне) или из провода (для походной антенны), закрепленного на фибергласовых трубах.«Траповая» антенна является менее «капризной» в настройке и эксплуатации, чем антенна, состоящая из двух расположенных рядом излучателей.Размеры антенны приведены на рис.2.Излучатель состоит из нескольких отрезков дюралюминиевых труб разного диаметра, соединенных одна с другой через переходные втулки. Питается антенна 50-омным коаксиальным кабелем. Для предотвращения протекания ВЧ тока по внешней стороне оплетки кабеля питание осуществляется через токовый балун (рис.3), выполненный на кольцевом сердечнике FT140-77.Обмотка состоит из четырех витков коаксиального кабеля RG174. Электрическая прочность этого кабеля вполне достаточна для работы с передатчиком с выходной мощностью до 150 Вт. При работе с более мощным передатчиком следует применять либо кабель с тефлоновым диэлектриком (например, RG188), либо кабель большого диаметра, для намотки которого, естественно, потребуется ферритовое кольцо соответствующего размера. Балун устанавливается в подходящей диэлектрической коробке:

Рекомендуется между вертикальным излучателем и опорной трубой, на которой крепится антенна, следует установить безындуктивный двухваттный резистор сопротивлением 33 кОм, который будет предотвращать накопление статического заряда на антенне. Резистор удобно разместить в коробке, в которой установлен балун. Конструкция трапа может быть любой.
Так, катушку индуктивности можно намотать на отрезке ПВХ-трубы диаметром 25 мм с толщиной стенок 2,3 мм (в эту трубу вставляются нижняя и верхняя части излучателя). Катушка содержит 7 витков медного провода диаметром 1,5 мм в лаковой изоляции, намотанного с шагом 1-2 мм. Требуемая индуктивность катушки - 1,16 мкГн. Параллельно катушке подключается высоковольтный (6 кВ) керамический конденсатор емкостью 27 пФ, и в результате получается параллельный колебательный контур на частоту 28,4 МГц. Точная настройка резонансной частоты контура проводится сжатием или растяжением витков катушки. После настройки витки фиксируются клеем, но следует иметь в виду, что излишнее количество нанесенного на катушку клея может значительно изменить ее индуктивность и привести к росту диэлектрических потерь и, соответственно, снижению КПД антенны. Кроме того, трап можно изготовить из коаксиального кабеля, намотав 5 витков на ПВХ-трубе диаметром 20 мм, но необходимо предусмотреть возможность изменения шага намотки для обеспечения точной настройки на требуемую резонансную частоту. Конструкция трапа для его расчета очень удобно воспользоваться программой Coax Trap, которую можно скачать из Интернета. Практика показывает, что такие трапы надежно работают со 100-ваттными трансиверами. Для защиты трапа от воздействия окружающей среды он помещается в пластиковую трубу, которая сверху закрывается заглушкой. Противовесы можно изготовить из неизолированного провода диаметром 1 мм, и их желательно разнести как можно дальше друг от друга. Если для противовесов применяется провод в пластиковой изоляции, то их следует несколько укоротить. Так, противовесы из медного провода диаметром 1,2 мм в виниловой изоляции толщиной 0,5 мм должны иметь длину 2,5 и 3,43 м для диапазонов 10 и 15 м соответственно. Настройку антенны начинают в диапазоне 10 м, предварительно убедившись, что трап настроен на выбранную резонансную частоту (например, 28,4 МГц). Минимума КСВ в фидере добиваются изменением длины нижней (до трапа) части излучателя. Если эта процедура окажется безуспешной, то придется в небольших пределах изменить угол, под которым противовес располагается относительно излучателя, длину противовеса и, возможно, его расположение в пространстве.Только после этого принимаются за настройку антенны в диапазоне 15 м. Изменением длины верхней (после трапа) части излучателя добиваются минимума КСВ. Если добиться приемлемого КСВ невозможно, то следует применить решения, рекомендованные для настройки антенны диапазона 10 м.В опытном образце антенны в полосе частот 28,0-29,0 и 21,0- 21,45 МГц КСВ не превышал 1,5.

Настройка антенн и контуров с помощью генератора помех

Для работы с данной схемой генератора помех можно использовать реле любого типа с соответствующим напряжением питания и с нор мальнозамкнутым контактом. При этом чем выше напряжение питания реле, тем выше уровень помех, создаваемых генератором. Для уменьшения уровня наводок на испытываемые устройства, необходимо тщательно заэкранировать генератор, а питание осуществлять от батареи или аккумулятора для предотвращения попадания помех в сеть. Кроме наладки помехозащищенных устройств, с таким генератором помех можно производить измерения и наладку высокочастотной аппаратуры и ее узлов.

Определение резонансной частоты контуров и резонансной частоты антенны

При использовании обзорного приемника с непрерывным диапазоном или волномера можно определить резонансную частоту испытываемого контура по максимальному уровню помех на выходе приемника или волномера. Для устранения влияния генератора и приемника на параметры измеряемого контура их катушки связи должны иметь минимально возможную связь с контуром При подключении генератора помех к испытуемой антенне WA1, можно аналогично с измерением контура определить ее резонансную частоту или частоты.

И.Григоров, RK3ZK

Широкополосная апериодическая антенна T2FD

Постройка антенн на НЧ в связи с большими линейными размерами вызывает у радиолюбителей вполне определенные трудности, связанные с отсутствием необходимого для этих целей пространства, сложности изготовления и установки высоких мачт. Поэтому, работая на суррогатных антеннах, многие используют интересные НЧ диапазоны в основном для местных связей с усилителем «сто ватт на километр». В радиолюбительской литературе встречаются описания довольно эффективных вертикальных антенн, которые, по заявлениям авторов, «практически не занимают площади». Но стоит вспомнить, что для размещения системы противовесов (без которых вертикальная антенна малоэффективна) требуется значительное пространство. Поэтому в отношении занимаемой площади выгоднее использовать линейные антенны, особенно выполненные по типу популярной «инвертированное V», так как для их сооружения требуется всего одна мачта. Однако, превращение такой антенны в двухдиапазонную намного увеличивает занимаемую площадь, так как излучатели разных диапазонов желательно размещать в различных плоскостях. Попытки использовать переключаемые удлиняющие элементы, настроенные линии питания и прочие способы превращения отрезка провода во вседиапазонную антенну (при доступных высотах подвеса 12-20 метров) приводят чаще всего к созданию «суперсуррогатов» настраивая которые можно проводить потрясающие испытания своей нервной системы. Предлагаемая антенна не является «сверхэффективной», но позволяет нормально работать в двух-трех диапазонах без всяких переключений, отличается относительной стабильностью параметров и не нуждается в кропотливой настройке. Имея высокое входное сопротивление при небольших высотах подвеса, она обеспечивает лучший к.п.д., чем простые проволочные антенны. Это несколько видоизмененная широко известная антенна T2FD, популярная в конце 60-х годов, к сожалению, почти не применяемая в настоящее время. Очевидно, она попала в разряд «забытых» из-за поглощающего резистора, на котором рассеивается до 35% мощности передатчика. Именно боясь потерять эти проценты, многие считают T2FD несерьезной конструкцией, хотя спокойно используют на ВЧ диапазонах штырь с тремя противовесами, к.п.д. которого не всегда «дотягивает» до 30%. Пришлось услышать множество «против» в отношении предлагаемой антенны, зачастую ничем не обоснованных. Попытаюсь кратко изложить те «за», благодаря которым была выбрана T2FD для работы на НЧ диапазонах. В апериодической антенне, представляющей собой в простейшем варианте проводник с волновым сопротивлением Z, нагруженный на поглощающее сопротивление Rh=Z, падающая волна, достигнув нагрузки Rh не отражается, а полностью поглощается. Благодаря чему устанавливается режим бегущей волны, для которого характерно постоянство максимального значения тока Iмакс вдоль всего проводника. На рис. 1(A) изображено распределение тока вдоль полуволнового вибратора, а на рис. 1(B)- вдоль антенны бегущей волны (потери на излучение и в проводнике антенны условно не учтены. Заштрихованная область называется площадью тока и применяется для сравнения простых проволочных антенн. В теории антенн существует понятие эффективной (электрической) длины антенны, которая определяется замещением реального вибратора мнимым, вдоль которого ток распределяется равномерно, имея такое же значение Iмакс, что и у исследуемого вибратора (т.е. так же, как на рис. 1(B)). Длина мнимого вибратора выбирается такой, чтобы геометрическая площадь тока реального вибратора была равна геометрической площади мнимого. Для полуволнового вибратора длина мнимого вибратора, при которой площади тока равны, составляет величину равную L/3.14 [пи], где L - длина волны в метрах. Не трудно вычислить, что длина полуволнового диполя с геометрическими размерами = 42 м (диапазон 3,5 МГц) электрически равна 26 метрам, которые и являются эффективной длиной диполя. Вернувшись к рис. 1(B), легко обнаружить, что эффективная длина апериодической антенны практически равна ее геометрической длине. Проведенные эксперименты в диапазоне 3,5 МГц позволяют рекомендовать данную антенну радиолюбителям в качестве неплохого варианта «затраты-отдача». Немаловажным достоинством T2FD является широкополосность и работоспособность при «смешных» для НЧ диапазонов высотах подвеса, начиная с 12-15 метров. Например, диполь 80-метрового диапазона при такой высоте подвеса превращается в «военную» зенитную антенну,
т.к. излучает вверх порядка 80% подведенной мощности.Основные размеры и конструкция антенны показаны на рис.2, На рис.3 - верхняя часть мачты, где установлен согласующе-симметрирующий трансформатор Т и поглощающее сопротивление R Конструкция трансформатора на рис.4 Выполнить трансформатор можно практически на любом магнитопроводе с проницаемостью 600-2000 НН. Например, сердечник от ТВС ламповых телевизоров или пара сложенных вместе колец диаметром 32-36 мм. Он содержит три обмотки, намотанные в два провода, например МГТФ-0,75 кв.мм (использовался автором). Сечение зависит от подводимой к антенне мощности. Провода обмоток уложены плотно, без шага и скруток. В месте, указанном на рис.4, провода следует скрестить. Достаточно намотать 6-12 витков в каждой обмотке. Если внимательно рассмотреть рис.4, то изготовление трансформатора не вызывает каких-либо затруднений. Сердечник следует защитить от коррозии лаком, желательно масляным или влагостойким клеем. Поглощающее сопротивление должно теоретически рассеивать 35% подводимой мощности. Экспериментально установлено, что резисторы МЛТ-2 при отсутствии постоянного тока на частотах KB диапазонов выдерживают 5-6-кратные перегрузки. При мощности 200 Вт достаточно 15-18 резисторов МЛТ-2, соединенных параллельно. Результирующее сопротивление должно находиться в пределах 360-390 Ом. С указанными на рис.2 размерами антенна работает в диапазонах 3,5-14 МГц. Для работы в диапазоне 1,8 МГц желательно увеличить общую длину антенны хотя бы до 35 метров, идеально 50-56 метров. При правильном выполнении трансформатора Т антенна в какой-либо настройке не нуждается, необходимо лишь убедиться в том, что КСВ лежит в пределах 1,2-1,5. В противном случае ошибку следует искать в трансформаторе. Следует отметить, что с популярным трансформатором 4:1 на основе длинной линии (одна обмотка в два провода) работа антенны резко ухудшается, причем КСВ может быть 1,2-1,3.

German Quad Antenna на 80,40,20,15,10 и даже 2м

Большинство городских радиолюбителей сталкиваются с проблемой размещения коротковолновой антенны из-за ограниченного пространства. Но если имеется место для подвеса проволочной антенны, то автор прелагает воспользоваться им и сделать "GERMAN Quad /images/book/antenna". Он сообщает, что она хорошо работает на 6-ти любительских диапазонах 80, 40, 20, 15, 10 и даже 2 метрах. Схема антенны приведена на рисунке.Для ее изготовления потребуется ровно 83 метров медного провода диаметром 2,5 мм. Антенна представляет собой квадрат со стороной 20,7 метра, который подвешивается горизонтально на высоте 30 футов - это примерно - 9 м. Соединительная линия делается из коаксиального кабеля 75 Ом. По сообщению автора антенна имеет усиление 6 дБ по отношению к диполю. На 80 метрах имеет достаточно высокие углы излучения и хорошо работает на расстояниях 700… 800км. Начиная с 40 метрового диапазона, углы излучения в вертикальной плоскости уменьшаются. По горизонту антенна не имеет каких-либо приоритетов по направленности. Ее же автор предлагает использовать и для мобильно-стационарной работы в полевых условиях.

3/4 Long Wire антенна

Большая часть его дипольных антенн базируется на длине волны 3/4L каждой из сторон. Одна из них - «Inverted Vee» мы и рассмотрим.
Физическая длина антенны больше ее резонансной частоты, увеличение длины до 3/4L расширяет полосу пропускания антенны по сравнению со стандартным диполем и понижает вертикальные углы излучения, делая антенну более дальнобойной. В случае горизонтального расположения в виде угловой антенны (полуромба), она приобретает весьма приличные направленные свойства. Все указанные свойства распространяются и на антенну, выполненную в виде «INV Vee». Входное сопротивление антенны понижается, и требуются специальные меры по согласованию с линией питания.При горизонтальном подвесе и общей длине 3/2L, антенна имеет четыре главных и два незначительных лепестка. Автор антенны (W3FQJ) приводит множество расчетов и диаграмм для разных длин плеч диполя и улов подвеса. По его словам он вывел две формулы, содержащие два «магических» числа, позволяющие определить длину плеча диполя (в футах) и длину фидера применительно к любительским диапазонам:

L (каждой половины) = 738/F(в МГц) (в футах feet),
L (фидера) = 650/F(в МГц) (в футах feet).

Для частоты 14,2МГц,
L (каждой половины) = 738/14,2 = 52 фута (feet),
L (фидера) = 650/F = 45 футов 9 дюймов.
(Перевод в метрическую систему проведите самостоятельно, автор антенны считает все в футах). 1 Фут =30,48 см

Тогда для частоты 14,2МГц: L (каждой половины) = (738/14,2)* 0,3048 =15,84 метра,L (фидера) = (650/F14,2)* 0,3048 =13,92 метра

P.S. Для других выбранных соотношений длин плеч коэффициенты изменяются.

В "Радиоежегоднике" 1985 года была опубликована антенна немного странным названием. Она изображена обычным равнобедренным треугольником с периметром 41,4 м. и, очевидно, поэтому не привлекла к себе внимания. Как выяснилось позже, очень напрасно. Мне, как раз понадобилась простая многодиапазонная антенна, и я подвесил ее на небольшой высоте - около 7 метров. Длина питающего кабеля РК-75 около 56 м (полуволновой повторитель). Измеренные значения КСВ, практически совпали с приведенными в "Ежегоднике".Катушка L1 намотана на изоляционном каркасе диаметром 45 мм и содержит 6 витков провода ПЭВ-2 толщиной 2… 2 мм. ВЧ трансформатор Т1 намотан проводом МГШВ на ферритовом кольце 400НН 60х30х15 мм, содержит две обмотки по 12 витков. Размер ферритового кольца не критичен и выбирается, исходя из подводимой мощности. Кабель питания подключается только так, как показано на рисунке, если его включить наоборот - антенна работать не будет. Антенна не требует настройки, главное, точно выдержать ее геометрические размеры. При работе на диапазоне 80 м, по сравнению с другими простыми антеннами, она проигрывает на передачу - маловата длина. На прием разница практически не ощущается. Измерения, проведенные ВЧ-мостом Г.Брагина ("Р-Д" №11), показали, что мы имеем дело с нерезонансной антенной. Измеритель АЧХ показывает только резонанс кабеля питания. Можно предположить, что получилась достаточно универсальная антенна (из простых), имеет небольшие геометрические размеры и ее КСВ практически не зависит от высоты подвеса. Затем появилась возможность увеличить высоту подвеса до 13 метров над землей. И в этом случае величина КСВ по всем основным любительским диапазонам, кроме 80-метрового, не превышала 1,4. На восьмидесятке его значение составило от 3 до 3,5 на верхней частоте диапазона, поэтому для ее согласования дополнительно используется простейший антенный тьюнер. Позже удалось измерить КСВ на WARC диапазонах. Там значение КСВ не превысило 1,3. Чертеж антенны приводится на рисунке.

В. Гладков, RW4HDK г.Чапаевск

GROUND PLANE на 7 Mгц

При работе на низкочастотных диапазонах вертикальная антенна имеет ряд преимуществ. Однако из-за больших размеров не везде можно ее установить. Уменьшение высоты антенны приводит к падению сопротивления излучения и росту потерьВ качестве искусственной "земли" использован экран из проволочной сетки и восемь радиальных проводов.Питается антенна 50-омным коаксиальным кабелем. КСВ антенны, настроенной с помощью последовательного конденсатора, был равен 1,4.По сравнению с ранее использовавшейся антенной типа "Inverted V" данная антенна обеспечивала выигрыш в громкости от 1 до 3 баллов при работе с DX.

QST, 1969, N 1Радиолюбитель С. Гарднер (K6DY/W0ZWK) применил емкостную нагрузку на конце антенны типа "Ground Plane" на диапазоне 7 Мгц (см. рисунок), что позволило уменьшить ее высоту до 8 м. Нагрузка представляет собой цилиндр из проволочной сетки.

P.S.Кроме QST, описание этой антенны было напечатано в журнале "Радио".В году 1980, будучи еще начинающим радиолюбителем изготавливал данный вариант GP. Ёмкостную нагрузку и искуственную землю делал из оцинкованной сетки, благо в те времена было этого в достатке. Действительно, антенна выиграла у Inv.V., на длинных трассах. Но поставив затем класическую 10_ти метровую GP, понял, что не стоило заморачиваться на изготовлении ёмкости на верху трубы, а лучше сделать длиннее её на два метра. Трудоёмкость изготовления не окупают конструкцию, не говорю уже о материалах на изготовление антенны.

Антенна DJ4GA

По виду она напоминает образующую дискоконусной антенны, а ее габаритные размеры не превышают габаритных размеров обычного полуволнового диполя.Сравнение этой антенны с полуволновым диполем, имеющим такую же высоту подвеса, показало, что она несколько уступает диполю при ближних связях SHORT-SKIP, но существенно эффективнее его при дальних связях и при связях, осуществляемых с помощью земной волны. Описываемая антенна имеет большую полосу пропускания по сравнению с диполем (примерно на 20%), которая в диапазоне 40 м достигает 550 кГц (по уровню КСВ до 2).При соответствующем изменении размеров антенна может быть применена и на других диапазонах. Введение в антенну четырех режекторных контуров, подобно тому, как это сделано в антенне типа W3DZZ, позволяет реализовать эффективную многодиапазонную антенну. Питание антенны осуществляется коаксиальным кабелем с волновым сопротивлением 50 Ом.

P.S.Мною изготавливалась данная антенна. Все размеры были выдержаны, эдентичны рисунку. Установлена была на крыше пятиэтажного дома. При переходе с треугольника 80_ти метрового диапазона, расположенного горизонтально, на ближних трассах проигрышь составлял 2-3 балла. Проверялась при связях со станциями Дальнего востока (Аппаратура на прием Р-250). Выиграла у треугольника максимально полтара балла. При сравнении с класическим GP, проиграла полтора балла. Аппаратура использовалась самодельная, UW3DI усилитель 2хГУ50.

Всеволновая любительская антенна

Антенна французского радиолюбителя-коротковолновика описана в журнале "CQ". По утверждениям автора конструкции, антенна дает хороший результат при работе на всех коротковолновых любительских диапазонах - 10 м, 15 м, 20 м, 40 м и 80 м. Она не требует ни особо тщательного расчета (кроме расчета длины диполей), ни точной настройки. Устанавливать ее следует сразу так, чтобы максимум характеристики направленности был ориентирован в направлении преимущественных связей. Фидер такой антенны может быть либо двухпроводным, с волновым сопротивлением в 72 ом, либо коаксиальным, с тем же волновым сопротивлением. Для каждого диапазона, кроме диапазона 40 м, в антенне имеется отдельный полуволновый диполь. На 40-метровом диапазоне хорошо работает в такой антенне диполь диапазона 15 м.Все диполи настроены на средние частоты соответствующих любительских диапазонов и подсоединяются в центре ее параллельно к двум коротким медным проводам. К этим же проводам подпаивается снизу фидер. Для изоляции центральных проводов друг от друга используются три пластины из диэлектрического материала. На концах пластин делаются отверстия для крепления проводов диполей. Все места соединения проводов в антенне пропаиваются, а место подсоединения фидера обматывается лентой из пластиката, для предотвращения попадания в кабель влаги. Расчет длины L (в м) каждого диполя ведется по формуле L=152/fcp, где fср - средняя частота диапазона, Мгц. Диполи делаются из медной или биметаллической проволоки, оттяжки - проволочные или из канатика. Высота антенны - любая, но не менее 8,5 м.

P.S. Также была установлена на крыше пятиэтажного дома, был исключён диполь на 80 метров (не позволили размеры и конфигурация крыши). Мачты использовал из сухой сосны, комель 10 см в диаметре, выссота 10 метров. Полотна антенн изготовлены были из сварочного кабеля. Кабель разрезался, бралась одна жила состоящая из семи менных проволок. Дополнительно немного подкручивал, для увеличения плотности. Показала себя как нормальные, отдельно подвешанные диполя. Для работы вполне приемлимый вариант.

Переключаемые диполя с активным питанием

Антенна с переключаемой диаграммой направленности относится к типу двухэлементных линейных антенн с активным питанием и предназначена для работы в диапазоне 7 МГц. Коэффициент усиления около 6 дБ, отношение "вперед-назад" 18 дБ, "вбок" - 22-25 дБ. Ширина ДН по уровню половинной мощности около 60 градДля 20 м диапазона L1=L2= 20,57 м: L3 = 8,56 м
Биметалл или ант. канатик 1,6… 3 мм.
I1 =I2= 14м кабель 75 Ом
I3= 5,64м кабель 75 Ом
I4 =7,08м кабель 50 Ом
I5 = произвольная длина кабель 75 Ом
К1.1 - ВЧ реле РЭВ-15

Как видно из рис.1, два активных вибратора L1 и L2 расположены на расстоянии L3 (фазовый сдвиг 72 градуса) друг от друга. Элементы запитаны противофазно, суммарный фазовый сдвиг составляет 252 градуса. К1 обеспечивает переключение направления излучения на 180 градусов. I3 -фазосдвигающий шлейф I4- четвертьволновый согласующий отрезок. Настройка антенны заключается в подгонке размеров поочередно каждого элемента по минимуму КСВ при замкнутом накоротко через полуволновый повторитель 1-1(1.2) втором элементе. КСВ в середине диапазона не превышает 1,2, на краях диапазона -1.4. Размеры вибраторов приведены для высоты подвеса 20 м. С практической точки зрения, особенно при работе в соревнованиях, хорошо себя зарекомендовала система, состоящая из двух подобных антенн, расположенных перпендикулярно друг другу и разнесенных в пространстве. На крыше в этом случае размещается коммутатор, достигается мгновенное переключение ДН в одном из четырех направлений. Один из вариантов расположения антенн среди типовых городских застроек предложен на рис.2.Данная антенна применяется с 1981 г., неоднократно повторена на разных QTH, с ее помощью проведены десятки тысяч QSO с более чем 300 странами мира.

С сайта UX2LL первоисточник "Радио №5 стр 25 С.Фирсов. UA3LDH

Beam-антенна на 40 метров с переключаемой диаграммой направленности

Антенна, схематично изображенная на рисунке, изготавливается из медного провода или биметалла диаметром 3...5 мм. Из такого же материала делают и линию согласования. В качестве коммутирующих реле применены реле от радиостанции РСБ. В согласователе используется конденсатор переменной емкости от обычного радиовещательного приемника, тщательно защищенный от попадания в него влаги. Провода управления реле приклеплены к капроновому шнуру-растяжке, проходящему по осевой линии антенныАнтенна имеет широкую диаграмму направленности (около 60°). Соотношение излучений вперед-назад - в пределах 23...25 дБ. Расчетный коэффициент усиления - 8 дБ. Антенна продолжительное время эксплуатировалась на станции UK5QBE.

Владимир Латышенко (RB5QW) г. Запорожье, Украина

P.S. Вне моей крыше, как выездной вариант, из интереса проводил эксперемент с антенной выполненной как Inv.V. Остальное почерпнул и выполнил как в данной конструкции. Реле применял автомобильные, четырех контактные, металлический корпус. Так как использовал для питания аккумулятор 6СТ132. Аппаратура TS-450S. Сто ватт. Действительно результат, как говорится на лицо! При переключении на восток начинали вызывать японские станции. VK и ZL, понаправлению были несколько южнее, пробивались с трудом через станции Японии. Про запад не буду описывать, все гремело! Антенна класная! Жаль не хватает места на крыше!

Многодиапазонный диполь на WARC диапазоны

Антенна сделана из медного провода диаметром 2 мм. Изоляционные распорки сделаны у меня из текстолита толщиной 4 мм (можно из деревянных планок) на которых с помощью болтов (Мб) закреплены изоляторы для наружной электропроводки. Питается антенна коаксиальным кабелем типа РК75 любой разумной длины. Нижние концы изоляторных планок нужно обязательно растянуть капроновым шнуром, тогда антенна вся хорошо растягивается и диполи между собой не перехлестываются. На этой антенне проведен целый ряд интересных DX-QSO со всеми континентами используя трансивер UA1FA с одной ГУ29 без РА.

Антенна DX 2000

Коротковолновики часто используют вертикальные антенны. Для установки таких антенн, как правило, требуется небольшое свободное пространство, поэтому для некоторых радиолюбителей особенно проживающих в густонаселённых городских микрорайонах) вертикальная антенна - единственная возможность выходить в эфир на коротких волнах.Одной из пока малоизвестных вертикальных антенн, работающих на всех КВ диапазонах, является антенна DX 2000. В благоприятных условиях антенну можно использовать для проведения DX - радиосвязей, но при работе с местными корреспондентами (на расстояниях до 300 км.) она уступает диполю. Как известно, вертикальная антенна, установленная над хорошо проводящей поверхностью, имеет почти идеальные "DX-свойства", т.е. очень низкий угол излучения. При этом не требуется высокая мачта.Многодиапазонные вертикальные антенны, как правило, конструируются с заградительными фильтрами (трапами) и работают они практически так же, как однодиапазонные четвертьволновые антенны. Применяющиеся в профессиональной КВ радиосвязи широкополосные вертикальные антенны не нашли большого отклика в КВ радиолюбительстве, но имеют интересные свойства. На рисунке изображены наиболее популярные у радиолюбителей вертикальные антенны -четвертьволновый излучатель, электрически удлинённый вертикальный излучатель и вертикальный излучатель с трапами. Пример т.н. экспоненциальной антенны приведён справа. Такая объёмная антенна имеет хорошую эффективность в полосе частот от 3,5 до 10 МГц и вполне удволетворительное согласование (КСВ<3) вплоть до верхней границы КВ диапазона (30 МГц). Очевидно, что КСВ = 2 - 3 для транзисторного передатчика очень нежелателен, но, учитывая широкое распространение в настоящее время антенных тюнеров (часто автоматических и встроенных в трансивер), с высоким КСВ в фидере антенны можно мириться. Для лампового усилителя , имеющего в выходном каскаде П - контур, как правило, КСВ = 2 - 3 не представляет проблемы. Вертикальная антенна DX 2000 является своеобразным гибридом узкополосной четвертьволновой антенны (Ground plane), настроенной в резонанс в некоторых любительских диапазонах, и широкополосной экспоненциальной антенны. Основа антенны-трубчатый излучатель длиной около 6 м. Он собран из алюминиевых труб диаметром 35 и 20 мм., вставленных друг в друга и образующих четвертьволовый излучатель на частоту примерно 7 МГц. Настройку антенны на частоту 3,6 МГц обеспечивает включённая последовательно катушка индуктивности 75 МкГн, к которой подсоединена тонкая алюминиевая трубка длиной 1,9 м. В согласующем устройстве используется катушка индуктивности 10 МкГн, к отводам которой подключается кабель. кроме того, к катушке подключены 4 боковых излучателя из медного провода в ПВХ-изоляции длиной 2480, 3500, 5000 и 5390 мм. Для крепления излучатели удлинены нейлоновыми шнурами, концы которых сходятся под катушкой 75 МкГн. При работе в диапазоне 80 м заземление или противовесы требуются обязательно, хотя бы для защиты от грозы. Для этого можно глубоко закопать в землю несколько оцинкованных полос. При монтаже антенны на крыше дома очень трудно найти какую-нибудь "землю" для КВ. Даже хорошо изготовленное заземление на крыше не имеет нулевого потенциала относительно "земли", поэтому для устройства заземления на бетонной крыше лучше использовать металлические
конструкции, имеющие большую площадь поверхности. В применяемом согласующем устройстве заземление подключается к выводу катушки, в которой индуктивность до отвода, куда подключается оплётка кабеля, составляет 2,2 МкГн. Столь малая индуктивность недостаточна для подавления токов, протекающих по наружной стороне оплётки коаксиального кабеля, поэтому следует изготовить запорный дроссель, свернув около 5 м кабеля в катушку диаметром 30 см. Для эффективной работы любой четвертьволновой вертикальной антенны (в том числе, DX 2000) обязательно следует изготовить систему четвертьволновых противовесов. Антенна DX 2000 была изготовлена на радиостанции SP3PML (Войсковой клуб коротковолновиков и радиолюбителей PZK).

Эскиз конструкции антенны приведён на рисунке. Излучатель был выполнениз прочных дюралевых труб диаметром 30 и 20 мм. Растяжки, служащие для крепления медных проводов-излучателей, должны быть устойчивы и к растяжению, и к погодным условиям. Диаметр медных проводов следует выбирать не более 3 мм (для ограничения собственного веса), и желательно использовать провода в изоляции, что обеспечит устойчивость к погодным условиям. Для фиксации антенны следует применять прочные изоляционные оттяжки, которые не растягиваются при изменении погодных условий. Распорки для медных проводов излучателейдолжны быть выполнены из диэлектрика (например, ПВХ-трубы диаметром 28 мм), но для повышения жёсткости их можно изготовить из деревянного бруска или другого, как можно более лёгкого материала. Вся конструкция антенны насаживается на стальную трубу не длиннее 1,5 м, предварительно жестко прикреплённую к основанию (крыше), например, стальными оттяжками. Антенный кабель может быть подключён через разъём, который, должен быть электрически изолирован от остальнойчасти конструкции. Для настройки антенны и согласования её импеданса с волновым сопротивлением коаксиального кабеля предназначены катушки индуктивностью 75 МкГн (узел А) и 10 МкГн (узел В). Антенну настраивают на требуемые участки КВ диапазонов подбором индуктивности катушек и положения отводов. Место установки антенны должно быть свободно от других конструций, лучше всего, на расстоянии 10-12 м, тогда влияние этих конструкций на электрические характеристики антенны невелико.


Дополнение к статье:

Если антенна установлена на крыше многоквартирного дома, высота её установки должна составлять более двух метров от крыши до противовесов (в целях безопасности). Подсоединение заземления антенны к общему заземлению жилого дома либо к каким либо арматуринам, составляющих кострукцию крыши категорически не рекомендую (во избежание огромных взаимных помех). Заземление применять лучше индивидуальное, расположенное в подвале дома. Протягивать его следует в коммуникационных нишах строения или отдельной трубе, пришпиленной к стене снизу доверху. Возможно применение грозоразрядника.

В. Баженов UA4CGR

Методика точного расчета длины кабеля

Многие радиолюбители применяют 1/4 волновые и 1/2 волновые коаксиальные линии.Они необходимы в качестве трансформаторов сопротивлений повторителей импеданса, линий задержки фазы для антенн с активным питанием и др. Наиболее простой метод, но и наиболее неточный- метод умножения части длины волны на коэффициент 0.66, но он не всегда подходит, когда необходимо достаточно точновычислить длину кабеля, например 152.2 градуса. Такая точность бывает необходима для антенн с активным питанием, где от точности фазирования, зависит качество работы антенны. Коэффициент 0.66 берется средним, т.к. для одного и того же диэлектрика диэл. проницаемость может заметно отклоняться, а следовательно будет отклоняться и коэф.0.66.Хочу предложить метод, описанный ОN4UN. Он прост, но требует приборов (трансивер или генератор с цифровой шкалой, хороший КСВ-метр и эквивалент нагрузки 50 или 75 Ом в зависимости от Z. кабеля) рис.1. Из рисунка можно понять, как работает этот метод. Кабель, из которого планируется изготовить нужный отрезок, надо закоротить на конце. Далее обратимся к простой формуле. Допустим нам необходим отрезок в 73 градуса для работы на частоте 7.05Мгц. Тогда наш отрезок кабеля будет равен точно 90 градусам на частоте 7.05 х (90/73)=8.691МгцЭто означает, что перестраивая трансивер по частоте, на 8.691Мгц наш КСВ-метр должен указать минимум КСВ т.к. на этой частоте длина кабеля будет 90 градусов, а для частоты 7.05Мгц он будет ровно 73 градуса. Будучи закороченным, он проинвертирует кор. замыкание в бесконечное сопротивление и таким образом никак не будет влиять на показания КСВ-метра на частоте 8.691 Мгц.Для этих измерений необходим либо, достаточно чувствительный КСВ-метр, либо, достаточно мощный эквивалент нагрузки, т.к. придется увеличить мощность трансивера для уверенной работы КСВ-метра, если ему не будет достаточно мощности для нормальной работы. Этот метод дает очень высокую точность измерений, которая ограничена точностью КСВ-метра и точностью шкалы трансивера. Для измерений также можно воспользоваться антенным анализатором VА1, о котором я уже упоминал ранее. Разомкнутый кабель укажет на вычисленной частоте нулевой импеданс. Это очень удобно и быстро. Думаю, этот метод будет очень полезным для радиолюбителей.

Александр Барский (VАЗТТТ), vаЗttt@yahoo.соm

Ассиметричная антенна GP

Антенна представляет собой (рис.1) не что иное как "грундплэйн" с удлиненным вертикальным излучателем высотой 6,7 м и четырьмя противовесами длиной 3,4 м каждый. В точке питания установлен широкополосный трансформатор сопротивлений (4:1). На первый взгляд, указанные размеры антен¬ны могут показаться неправильными. Тем не менее, сложив длину излучателя (6,7 м) и противовеса (3,4 м), убеждаемся, что общая длина антенны составляет 10,1 м. С учетом коэффициента укорочения, это Лямбда/2 для диапазона 14 МГц и 1Лямбда для 28 МГц. Трансформатор сопротивлений (рис.2) изготовлен по общепринятой методике на ферритовом кольце от ОС черно-белого телевизора и содержит 2x7 витков. Он установлен в точке, в которой входное сопротивление антенны составляет около 300 Ом (аналогичный принцип возбуждения используется в современных модификациях антенны Windom). Средний диаметр вертикала - 35 мм. Для достижения резонанса на требуемой частоте и более точного согласования с фидером можно в небольших пределах изменять размеры и положение противовесов. В авторском варианте антенна имеет резонанс на частотах около 14,1 и 28,4 МГц (КСВ=1,1 и 1,3 соответственно). При желании, увеличив указанные на рис.1 размеры примерно вдвое, можно добиться работы антенны в диапазоне 7 МГц. К сожалению, в этом случае "испортится" угол излучения в диапазоне 28 МГц. Впрочем, применив П-образное согласующее устройство, установленное около трансивера, можно использовать авторский вариант антенны для работы в диапазоне 7 МГц (правда, с проигрышем в 1,5...2 балла по отношению к полуволновому диполю), а также в диапазонах 18, 21, 24 и 27 МГц. За пять лет эксплуатации, антенна показала неплохие результаты, особенно в 10-метровом диапазоне.

Укороченная антенна на 160 метров

Укоротковолновиков нередко возникают трудности с установкой полноразмерных антенн для работы на низкочастотных KB диапазонах. Один из возможных вариантов исполнения укороченного (примерно в два раза) диполя диапазона 160 м приведен на рисунке. Общая длина каждой из половин излучателя - около 60 м. Они сложены втрое, как это схематически показано на рисунке (а) и удерживаются в таком положении двумя концевыми (в) и несколькими промежуточными (б) изоляторами. Эти изоляторы, а также подобный им центральный изготавливают из негигроскопичного диэлектрического материала толщиной примерно 5 мм. Расстояние между соседними проводниками полотна антенны - 250 мм.

В качестве фидера используют коаксиальный кабель с волновым сопротивлением 50 Ом. На среднюю частоту любительского диапазона (или требуемого его участка - например телеграфного) антенну настраивают, перемещая две перемычки, соединяющие ее крайние проводники (на рисунке они изображены штриховыми линиями), и соблюдая симметрию диполя. Перемычки не должны иметь электрического контакта с центральным проводником антенны. С указанными на рисунке размерами резонансная частота 1835 кГц была достигнута при установке перемычек на расстоянии 1,8 м от концов полотна Коэффициент стоячей волны на резонансной частоте - 1,1. Данные о его зависимости от частоты (т. е. о полосе пропускания антенны) в статье отсутствуют.

Антенна на 28 и 144 мгц

Для эффективной работы в диапазоне 28 и 144 МГц необходимы вращающиеся направленные антенны. Однако применять на радиостанции две раздельные антенны такого типа обычно не представляется возможным. Поэтому автором были предпринята попытка совместить антенны обоих диапазонов, выполнив их в виде единой конструкции. Двухдиапазоная антенна представляет собой двойной "квадратат на 28 МГц, на несущей траверсе которого укреплен девитиэлементный волновой канал на 144МГц (рис. 1 и 2). Как показала практика, их взаимное влияние друг на друга незначительно. Влияние волнового канала компенсировано некоторым уменьшением периметров рамок "квадрата". "Квадрат” же, на мой взгляд, улучшает параметры волнового канала, увеличивая усиление и подавление обратного излучения.Питаются антенны с ломощю фидеров из 75-го омного коаксиального кабеля. Фидер "квадрата” включен в разрыв нижнего угла рамки вибратора (на рис. 1 слева). Небольшая асимметрия при таком включении вызывает лишь незначительный перекос диаграммы направленности в горизоинтальной плоскости и не сказывается на остальных параметрах. Фидер волнового канала включен через симметрирующее U-колено (рис-3). Как показали измерения КСВ в фидерах обеих антенн не превышает 1,1. Мачта антенны может быть выполнена из стальной или дюралевой трубы диаметром 35-50 мм. К мачте прикреплен редуктор, совмещенньй с реверсивным двигателем . К фланцу редуктора с ломощыо двух металлические накладок болтами М5 привинчена траверса "квадрата”, изготовленная из сосновой древесины. Сечение траверсы - 40Х40 мм. На ее концах укреплены крестовины, которое поддержвают восемь деревянных шестов "квадрата” диаметром 15-20 мм. Рамки выполнены из голого медного провода диаметром 2 мм (можно применить провод ПЭВ-2 1,5 - 2 мм). Периметр рамки рефлектора 1120 см, вибратора 1056 см. Волновой канал может быть выполнен из медных или латунных трубок или прутков. Его траверса укреплена на траверсе "квадрата” при помощи двух скоб. Настройки антенны не имеет особенностей. При точном повторении рекомедуемых размеров она может и не понадобится. Антенны на протяжении нескольких лет работы на радиостанции RA3XAQ показали хорошие результаты. На 144 МГц было проведено немало DX связей - с Брянском, Москвой, Рязанью, Смоленском, Липецком, Владимиром. На 28 МГц в общей сложности установлено более 3.5 тысяч QSO, среди них - с VP8, CX, LU, VK, KW6, ZD9 и др. Конструкция двухдиапазоннюй антенны была трижды повторена радиолюбителями Калуги (RA3XAC, RA3XAS, RA3XCA) и также получила положительные оценки.

P.S. В восмидесятых годах пршлого столетия стояла точно такая антенна. В оснавном делал для работы через низко-орбитные спутники… RS-10, RS-13, RS-15. Использовал UW3DI c Жутяевским трансвертером, и на прием Р-250. Все получалось неплохо десятью ваттами. Квадраты на десятке работали хорошо, много VK, ZL, JA и т.д.… Да и проход был тогда замечательный!

При проектировании и эксплуатации своего «антенного поля» приходится постоянно лавировать на крохотном пятачке крыши между лифтовыми будками, шахтами вентиляции, всевозможными телевизионными, спутниковыми и прочими антеннами, различными кабельными коммуникациями, открытой проводкой радиовещания… К тому же, следует учитывать весьма пагубно действующую всесезонную «уборочную страду» 🙂 и опасные стихийные явления природы - штормовые шквалы ветра, грозовую активность. А чего стоит, скажем, обледенение… Кстати, зимой 2011 г. с этим столкнулись многие радиолюбители средней полосы России. Достаточно одного более или менее продолжительного дождя при «минусе» - даже без ветра - как тут же ваша красавица антенна, предмет былой гордости, прямо на глазах превращается в бесформенный обледенелый комок из искореженного металлолома, обломков стеклопластика и обрывков проводов!

Наверное, к стихиям же стоит отнести и налеты представителей родного коммунального хозяйства, а также прочих «органов, власть предержащих». В первую очередь, естественно, это касается коротковолновиков, проживающих в стандартных многоэтажных домах.

Число счастливых обладателей капитальных и надежных суперантенн неуклонно растет, но пока не так высоко, как хотелось бы. В первую очередь капитал обычно тратится на приобретение «буржуйского аппарата», а на покупку фирменной антенны денег уже не хватает…

Что же тогда остается делать среднестатистическому отечественному радиолюбителю, у которого на крышу своего дома и доступа то свободного зачастую практически нет? А ведь работать в мировом эфире хочется, да еще желательно не абы как, а с максимально возможной эффективностью.

Вот и изобретаются («голь на выдумку хитра!») различные дешевые альтернативные варианты: оконные и балконные мини-конструкции, антенны «для экстренной работы», 🙂 «невидимые», «резервные», «одноразовые» - чуть ли не из тонюсенького медного проводка, «на пуговицах», как в эпоху «шпионской пятой категории»…

Выбрать оптимальную антенну, исходя из большого разнообразия форм и параметров, а также конкретных местных условий, не всегда достаточно просто. Все знают, что «хорошая антенна - лучший усилитель». Увы, далеко не все могут позволить себе иметь больше одной антенны, а уж по нескольку на каждый диапазон - вообще мечта… Кое-кто вынужден отказаться от работы, скажем, на соседнем с 7 МГц диапазоне 80 м только из-за того, что его «Инвертед» имеет там слишком высокий КСВ. Впрочем, к сожалению, бывает и так, что на согласование трансивера с антенной почти не обращается внимания. Лично сам знаю довольно курьезный случай, когда один коротковолновик, заменив старенького самодельного «Лаповка» на импортный аппарат, «прицепил» его к привычной «веревке», наивно полагая, что «там же есть защита выходных транзисторов…».

В литературе неоднократно описывались «антенны бедного радиолюбителя», однако все они далеко не самые простые и вовсе не дешевые конструкции. К сожалению, порой, по недосмотру авторов описаний, бывает, упускаются из виду и отдельные немаловажные детали - например, длина двухпроводной линии или материал мачты, которую иногда недопустимо выполнять металлической. Это затрудняет повторение конструкции неискушенными коллегами.

Начинающие (а, впрочем, чего греха таить, также и некоторые «заканчивающие», 🙂) радиолюбители используют в основном простейшие антенны - «Delta Loop» диапазона 80м (к тому же, часто имеющую неудачное расположение и запитанную как было удобнее по месту), «пресловутую» Inverted V да четвертьволновый Ground Plane… Для работы на других диапазонах (а желательно бы на всех!) может применяться то или иное согласующее устройство. Результаты работы антенны при этом, в зависимости от оптимизации на отдельном диапазоне, варьируются от очень хороших и до очень плохих. Кое-кто из коротковолновиков даже подбирает длину кабеля для «улучшения» КСВ…

Однако все же не стоит забывать о сути, о том, что никакое согласующие устройства, каким бы оно ни было хитроумным, не в состоянии уменьшить КСВ в фидере антенны. С его помощью можно добиться идеального согласования только лишь между нашей радиостанцией и самим согласующим устройством, расположенным на том же самом рабочем столе в шэке. Главный достигнутый эффект здесь в другом - передатчик, как говорится, «удалось обмануть», и выходной каскад выдаст всю возможную мощность. Но потери мощности непосредственно в самом фидере никуда не исчезли.

Как не раз отмечалось, обычный диполь с КСВ около 1, предназначенный для диапазона 80м, на частоте 7 МГц (где он является уже волновым вибратором с входным сопротивлением около 4кОм) будет иметь КСВ порядка 53, а в диапазоне 20 м получаем КСВ=57. Допустим, что с помощью некоего согласующего устройства (тюнера) удалось получить КСВ между трансивером и СУ и на этих диапазонах также равный 1. Но фидер-то все равно рассогласован с нагрузкой (излучателем). Применив двухпроводную линию, имеющую сравнительно низкие потери, на это можно было бы закрыть глаза, и все-таки с переменным успехом работать в эфире, но тут сразу возникает другая проблема - а как же конструктивно подвести ту самую открытую двухпроводную линию к столу оператора? Не будешь ведь то и дело выбегать на балкон к установленному там согласующему устройству! Если есть возможность пропустить проводники через окно - это прекрасно. А если нет? Да и стоит ли иметь возле своего рабочего места определенное ВЧ излучение? К тому же, согласующее устройство для симметричного фидера несравнимо сложнее конструктивно и в настройке, чем согласующее устройство для несимметричной нагрузки.

Предлагаемый вариант антенной системы на основе разработки Олега Сафиуллина, UA4PA, решает большинство поставленных вопросов. Такая антенна отнюдь не призвана заменить другие, гораздо более эффективные конструкции, но может заинтересовать тех радиолюбителей, которые не имеют достаточных ресурсов, свободной площади и подходящих опор для развешивания полотна антенны.

Многих начинающих коротковолновиков в базовом описании антенны UA4PA часто отпугивает необходимость установки на крыше вертикального штыря высотой 11,2м и проблема расположения на ограниченном пространстве под ним противовесов такой же длины. Между тем, в журнале «Радио», в прежние годы едва ли не единственном источнике нужной для радиолюбителя информации, давно была предложена идея о применении данного способа согласования к диполю, имеющему практически любые размеры плеч. При этом отмечалось, что за счет увеличения эффективной излучающей части такая антенна даже лучше относительно короткого вертикала работает на низкочастотных диапазонах, а также сам диполь может быть с успехом расположен и в виде Inverted Vee. На моей личной радиостанции (позывной в советское время - UB5LEW) почти 20 лет в качестве надежного резерва с успехом использовался простой наклонный луч длиной 35,5м с питанием с конца, но при помощи соответствующего отрезка кабеля соединенный с согласующим устройством.

Сама идея О.Сафиуллина получила активно обсуждалась в радиолюбительских кругах и на соответствующих форумах в Интернете. Главным недостатком подобной антенны ее рьяные противники (впрочем, в основном «теоретики», даже не ставившие перед собой задачу практических испытаний конструкции) называли работу коаксиального кабеля в режиме стоячей волны - дескать, всем известные компьютерные программы при анализе потерь просто «приходят в ужас» 🙂

Да, по-видимому, для сторонников QRO, любителей «закачать киловатт», эта антенна действительно не подходит - кабель может попросту расплавиться и выгореть… Однако для многих коротковолновиков, довольствующихся стандартной колебательной мощностью импортного аппарата в 100 Вт, потери в кабеле, который функционирует в режиме 100% стоячей волны (в данном случае это же вовсе и не фидер, а часть самого антенного полотна, только лишь почти не излучающая!), отнюдь не так страшны, как их малюют!

Естественно, потери есть в любом реальном фидере, но их можно в какой-то мере снизить, используя, например, кабель с более высоким волновым сопротивлением или же лучшего качества.

Ранее я применял 100-омный кабель РК-100-4-31 диаметром около 8мм с двойной оплеткой и омедненной стальной жилой, а в настоящее время - РК-75-7-11. Для того чтобы он, довольно толстый и упругий, не елозил по рабочему столу миниатюрным и легким коробком согласующего устройства, короткая часть линии вблизи согласующего устройства - длиной примерно до полуметра - вообще выполнена из тонюсенького RG-58.

Неоспоримое достоинство способа согласования, предложенного Олегом Сафиуллиным, - настройка всей антенной системы для работы на любом диапазоне непосредственно на рабочем столе коротковолновика. При этом между трансивером и согласующем устройством (а далее - начинается сама антенна!) легко достигается КСВ=1, т.е. выходной каскад выдаст «на гора» все 100% положенной мощности, а единственный КПЕ позволяет при необходимости мгновенно подстроить антенну поточнее и на краях диапазонов.

К недостаткам такого согласующего устройства можно отнести лишь необходимость подбора отводов в катушке колебательного контура, а также ограниченность применения - исключительно с одной данной антенной в ее конкретном исполнении и расположении. Любые попытки применить готовое согласующее устройство с какой-либо другой антенной обязательно приведут к появлению определенного рассогласования, и неизбежно потребуется полная перенастройка всего устройства.

Отдельные радиолюбители, установив вертикальный излучатель высотой 11,2м и подключив его через коаксиальный кабель произвольной длины и согласующее устройство Т-образного типа (например, фирмы MFJ), добились превосходных результатов. Что же, замечательно! Только не следует утверждать, что в данном случае якобы используется «антенна UA4PA», не замечая при этом, что от самой идеи согласования «по Сафиуллину», кроме длины штыря, ничего не осталось…

Схема СУ приведена ниже (для упрощения показаны отводы только для одного диапазона) и каких-либо особенностей не имеет - обычный параллельный колебательный контур (как и в оригинале антенны UA4PA) с индикатором протекающего в антенне тока.

Сравнивая предлагаемое согласующее устройство с широко распространенными Т-образными, Г-образными и П-образными согласователями, легко заметить выигрыш по эргономичности (один переключатель диапазонов да всего одна ручка плавной настройки) и по габаритам. Впрочем, как говорится, и тут возможны варианты, вплоть до применения роликовых вариометров.

Сама антенна представляет собой «уроненную вниз» одним концом известную конструкцию G5RV с двухпроводной воздушной линией.

Размеры вибратора (материал - биметалл медь/сталь диаметром 2мм) - общей длиной около 31м - выбраны исходя из имеющихся возможностей размещения на местности. Верхняя часть непосредственно активного полотна представляет собой некое подобие вертикала (к сожалению, в какой-то степени приближенного верхним концом к стене панельного девятиэтажного дома - а куда тут денешься?), а вторая половина - соответственно, противовеса. Двухпроводная линия, идущая к балкону, и далее, без каких-либо ухищрений, сам кабель (естественно, с учетом коэффициента укорочения) дополняют длину всей системы до требуемых 42,5 м.

Размеры линии - длина каждого проводника по 10,4м, материал - медный провод диаметром 1,8мм, изоляционные распорки, установленные через каждые 30 см, выполнены из листового фторопласта толщиной 3мм. Расстояние между проводниками не критично, и для волнового сопротивления 200 - 400 Ом находится в пределах 50 - 150 мм (в моей антенне - 50 мм).
При этом: а) отсутствуют дополнительные потери на участке «балкон - центр полотна» за счет замены коаксиального кабеля воздушной линией, и б) имеется достаточно комфортное продолжение антенно-фидерного устройства непосредственно по квартире (в моем случае - в следующую от балкона комнату) коаксиальным кабелем.

Единственный критичный параметр - это необходимая длина отрезка кабеля от двухпроводной линии до согласующего устройства, которая рассчитывается по формуле:

Излишек в любом удобном месте можно свернуть в бухту. Сам О.Сафиуллин указывал на желательность применения кабеля с более высоким волновым сопротивлением (для снижения потерь), а также на возможность подстановки в формулу вместо значения 42,5 логически напрашивающихся кратных величин в 85 или же 21,3м (в последнем случае антенна будет работать только в диапазонах от 40 до 10 м).

Конструкция согласующего устройства

Размеры примененного мной корпуса согласующего устройства невелики - всего лишь 190x125x70мм, и он весьма гармонично смотрится в комплекте с трансивером Yaesu FT-897. Для достижения желаемой малогабаритности устройства я сознательно отошел от классически принятых канонов, уменьшив расстояние между катушками и стенками корпуса в ущерб некоторой доле эффективности.

Конструкция согласующего устройства:

Переключатель SA1 (по схеме выше) - обычный ПГК, 11П4Н (11 положений, 4 направления). КПЕ С1 - с максимальной емкостью около 150 пФ. Можно применить КПЕ с большей максимальной емкостью, а то и вообще отказаться от дополнительных конденсаторов и галеты SA1.4, но при этом следует иметь в виду, что настройка контура станет значительно «острее».

Кстати, даже при небольшой мощности возбуждения напряжение на колебательном контуре может достигать значительной величины. Дополнительно «пристегиваемые» конденсаторы при подводимои мощности порядка 100 Вт (импортный трансивер либо UW3DI с выходным каскадом на лампе ГУ-29 и т.п.) должны иметь рабочее напряжение не ниже 2 кВ (обычные КСО-3 с напряжением до 500 В «прошивает»). Остальные детали обозначены на принципиальной схеме или видны на фото согласующего устройства и дополнительных пояснений не требуют.

Катушки для СУ каждый радиолюбитель свободно подберет из любых имеющихся в наличии с близкими параметрами - они абсолютно не критичны, общее количество витков вполне можно «прикинуть на глаз», исходя из самого низкочастотного требуемого диапазона, а отводы будут подобраны в процессе настройки. В подходе к выбору моточных изделий следует руководствоваться одним - желательно добиться как можно более высокой добротности катушки. Если есть возможность, катушки целесообразно выполнить из посеребренного провода (хотя бы L1).

Данные катушек индуктивности: L1 намотана на керамическом ребристом каркасе (а можно и без него) диаметром 32 мм и содержит 8 витков посеребренного провода 02,2 мм, намотка с шагом 5 мм; L2 намотана на керамическом каркасе 060 мм и содержит 23 витка провода ПЭВ-2 диаметром 1,2 мм, намотка с шагом 1,8 мм.

Переключаемые по диапазонам отводы от катушек, считая от верхнего (по схеме) вывода (указано их приблизительное положение), а также емкости подключаемых на низкочастотных диапазонах дополнительных конденсаторов приведены в таблице.

Настройка
После заделки разъемов, вооружившись терпением, пинцетом и паяльником, можно приступать к настройке согласующего устройства. На первоначальном этапе с помощью элементарных измерительных приборов - ГСС и лампового вольтметра, либо ГИРа - желательно подобрать отводы контура по диапазонам при среднем положении ротора КПЕ и отключенном от согласующего устройства передатчике. Затем,контролируя КСВ по включенному между трансивером и согласующим устройством КСВ-метру либо посматривая на запрятанный в «буржуйский» аппарат ЖКИ, подбирается согласование 50-омного выхода передатчика с контуром, т.е. отвод делается в той точке, где входное сопротивление будет около 50 Ом. При этом следует учитывать, что, скорее всего, может потребоваться и подбор точки включения в контур кабеля антенны на каждом отдельном диапазоне.

Конкретно все налаживание согласующего устройства не составляет особого труда и вполне доступно даже начинающему коротковолновику (в этом случае для простоты и приобретения начального опыта можно ограничиться одним диапазоном - 80 или 40м). А в итоге радиолюбитель получает простую, дешевую, малозаметную и труднодоступную для посторонних людей коротковолновую антенну, позволяющую даже в стесненных городских условиях неплохо работать в эфире на всех любительских KB диапазонах!

Кстати, в диапазоне 160м параллельный контур согласующего устройства у меня не используется, т.к. вибратор при имеющейся длине в 42,5 м является полуволновым только для 3,5 МГц. Примерно равный по длине четверти волны на 1,8 МГц, он согласовывается с помощью последовательно включенной небольшой дополнительной катушки (каркас - диаметром 25мм, провод ПЭВ-2 - диаметром 1,5 мм, 18 витков, намотка - виток к витку). Для большей эффективности следует настроить и сам контур СУ на 160 м, при этом либо включить специальную удлинительную индуктивность между контуром и разъемом для кабеля, либо в формуле для расчета длины кабеля применить исходную цифру 85 м. В этом случае методика настройки согласующего устройства на 1,8 МГц будет аналогична другим диапазонам.

Результаты
В заключение, несколько слов об эффективности антенны. За счет наклонного расположения вибратора, в какой-то степени приближающегося к вертикали, значительная составляющая излучения в диаграмме направленности приходится на прижатый к земле лепесток, что благоприятно для проведения дальних радиосвязей. При установке антенны возможны любые практически осуществимые вариации как с пространственным расположением и длиной элементов в любом конкретном месте, так и с размерами согласующей линии - главное, лишь бы общие габариты вписывались в формулу.

Любители компьютерных расчетов могут смоделировать ожидаемые диаграммы направленности, а также посчитать КПД антенны и «недопустимые потери» в кабеле 🙂

В процессе настройки согласующего устройства на трансивере FT-897 с выходной мощностью 100 Вт в диапазоне 1,8 МГц были проведены радиосвязи с OH3XR, UA9KAA, LA3XI; в диапазоне 3,5 МГц - с UA0WB, RKOUT, E7/DK9TN; в диапазоне 7 МГц - с 4S7AB, P40L, VQ9JC; в диапазоне 10 МГц - с 9M6XRO/P, TS7TI, OY6FRA; в диапазоне 14 МГц - с КН6МВ, 9Q500N, WH0DX (с первого вызова!), в диапазоне 18 МГц - с KH0/KT3Q, ZS6X, 9М2ТО, в диапазоне 21 МГц - с BD6JJX; BD1ISI, HS0ZEE; в диапазоне 24 МГц -CVQ9LA, 5Р5Х, EX8MLE; в диапазоне 28 МГц - с 4J9M, OG20YL, IK2SND.

Справедливости ради отмечу, что все радиосвязи - телеграфные, поскольку из всех других видов излучения я предпочитаю именно этот.

Антенна в ежедневной практической работе на всех любительских диапазонах полностью оправдала ожидаемые рабочие характеристики и позволяет проводить уверенные радиосвязи со всеми континентами и различными экспедициями, не испытывая особой потребности в дополнительном усилителе мощности. Впрочем, исключив из схемы сравнительно слаботочный тумблер (здесь он применен сознательно, для удобства коммутации заземления антенны) и увеличив электрическую прочность КПЕ и катушек, вполне допустимо увеличить колебательную мощность передатчика до 300 - 500 Вт. Аналогичный вариант конструкции длительное время эксплуатировался автором совместно с разными усилителями на лампах ГУ-50 (от 2 до 4 шт.), при этом сколько-нибудь заметного, а уж тем более, существенного нагрева кабеля, а также помех телевидению совершенно не наблюдалось.

При соответствующей настройке данное согласующее устройство можно с успехом применить и с другой антенной (например, Delta Loop) для повышения эффективности ее согласования при работе на всех любительских диапазонах.

Наши любимые КВ Антенны. Коротковолновые антенны на любительские диапазоны, есть и остаются одной из актуальных тем в радиолюбительстве. Начинающий смотрит, какую антенну применить и асы эфира время от времени просматривают, что новенького появилось.

Не надо стоять на месте, а улучшать свои результаты постоянно, вот мы и идем по этому пути, понимания и совершенствования своих антенн. Можно даже некоторых радиолюбителей выделить в отдельную группу – Антенщики.

В последнее время антенны и в готовом виде стали доступнее. Но, даже купив такую антенну вместе с установкой, владелец, в нашем случае радиолюбитель должен иметь представление.

В моем представлении начинается все с места, где наши антенны будут размещены, потом сами антенны. Выбор места предоставлен конечно не всем, а здесь мы можем здорово выиграть, да и как выбирать, чутье такое дано не всем, но есть такие радиолюбители.

КВ Антенны на первом месте

Технически сравнить место на КВ проблемно (на УКВ просто и измерения показывают разницу в четыре децибела). Пусть повезет тем, кому предстоит такой выбор места. На вч диапазоны выбор антенн у нас побольше и габариты терпимы, а вот на нч диапазоны выбор антенн в готовом виде поменьше. Да и понятно – пять элементов яги на диапазон 80 метров не всем по карману. Вот здесь поле работ может быть большое, если у радиолюбителя есть такое поле для размещения антенн на нч диапазоны

Есть такая книга, где много информации по антеннам на нч диапазоны

Любительские антенны коротких и ультракоротких волн

Антенна является устройством, участвующим в процессе передачи электромагнитной энергии из линии питания в свободное пространство, и наоборот. Каждая антенна имеет активный элемент, например, вибратор, а также может содержать один или более пассивных элементов. Активный элемент антенны — — вибратор, как правило. непосредственно соединен с линией питания. Появление переменного напряжения на вибраторе связано как с распространением волны в линии питания, так и с возникновением электромагнитного поля вокруг вибратора.

Идеальная антенна для радиолюбительских связей на кв

Какими антеннами пользуемся мы, радиолюбители. Какие, нам нужны? Нужна ли нам идеальная антенна на метровые диапазоны. Скажите что таких нет, и что идеального вообще ничего не бывает. Тогда близко к идеальной. А зачем? Спросите вы. Кто хочет добиваться результатов, идти вперед он рано или поздно подойдет к этому вопросу. Давайте рассмотрим, как понимать за идеальную антенну на метровых любительских диапазонах.

Почему именно на любительских метровых, да потому что наши корреспонденты находятся на разных расстояниях в разные стороны света. Прибавим сюда условия местные, где антенна расположена, и условия прохождения радиоволн в данное время на этих частотах. Получится много неизвестных. Какой угол излучения, какая поляризация будет максимальной в конкретный отрезок времени с конкретным корреспондентом (территорией).

Да, кому-то может повезти. С местом, выбора антенн, высотой подвеса. Так что надо делать? Чтобы везло всегда. Нам нужна такая антенна, которая в любой момент времени будет иметь наилучшие параметры для данного прохождения радиоволн с любой территорией. Подробней = Мы сканируем (крутим) антенну по азимуту это хорошо. Это первое условие. Второе условие = нам надо сканировать по углу излучения в вертикальной плоскости.

Если кто не знает – в зависимости от условий прохождения, сигнал может приходить под разными углами от одного и того — же корреспондента. Третье условие = это поляризация. Сканирование или изменение поляризации с горизонтальной на вертикальную поляризацию и обратно, плавно или ступенчато. Создав и получив эти три условия в одной антенне, мы получим идеальную антенну для радиолюбительской связи на коротких волнах.

Идеальная антенна

Идеальная антенна , так что это такое. Если рассматривать, например спутниковые антенны, то возможно становится нагляднее, проще для понимания. Здесь берем размер (диаметр тарелки) это прямая зависимость от усиления. Один спутник – взяли для примера антенну 60см. диаметром. Уровень сигнала на входе приемника будет мал, и порой картинки мы не увидим. Возьмем антенну диаметром 130 см. Уровень в норме, картинка стабильная.

Теперь возьмем антенну диаметром 4 метра и что мы можем наблюдать. Порой картинка пропадает. Да, тут две причины могут быть. Это ветер качнул нашу 4-метровую антенну и сигнал пропал. Это спутник на орбите не стабильно держит свои координаты. Вот и получается с одной стороны 4-метровая антенна лучшая по усилению, с другой она не оптимальна, значит, не идеальна. В данном случае оптимальная антенна 130 см. В данном случае, почему нельзя назвать её идеальной.

Так и на метровых радиолюбительских диапазонах. Не всегда пять элементов яги на высоте 40 метров для 80-метрового диапазона будут оптимальны. Значит, не идеальны. Можно даже привести несколько примеров из практики. В своих лабораторных работах изготовил 3 элемента на 10-метровый диапазон. Пассивные элементы изогнуты внутрь активного. Потом трех — диапазонный вариант такой антенны войдет в моду под известным названием.

Послушал, покрутил ну и конечно проводил связи на эту антенну, впечатление первое замечательное. Тут и выходные подошли, очередной контест. Но когда включился на 10-ку с этой антенной – то тишина, вот думаю, вчера гремел диапазон, а сегодня нет прохода.

Время от времени включался на этот диапазон, чтобы послушать, вдруг начнется проход. При очередном заходе на 10-ку, многочисленные радиолюбительские станции оглушили меня – началось. И тут сразу обнаруживаю, что подключена не та антенна. Вместо 3-элементов оказалась пирамида для 80-метрового диапазона. Переключаю на 3 элемента – тишина, на пирамиду гремят сигналы. Вышел на улицу, обследовал 3 элемента, может что случилось, нет, все нормально.

Хорошо тогда поработал на 28 мегагерц, много связей провел на пирамиду для 80-метрового диапазона. В понедельник, вторник такая же картина наблюдалась, и только в среду встало вроде как на свои места. На пирамиду тишина, а на 3-элемента гремят. В чем разница? Разница по углу излучения.

В пирамиде моей излучение на 28мгц. под углом 90 градусов, то есть в зенит, а в 3-элементной ниже 20 градусов. Такой практический пример дает нам повод для размышления. Другой пример, когда был в нулевом районе. Слышу на 20-ке вызов для нулевого района, знаю, что у данного товарища антенна за несколько тысяч долларов, что она на хорошей высоте и усилитель мощности там не меньше киловатта. Зову его, а он не слышит, вернее, слышит, но не может и позывной разобрать.

Покрутил он свою дорогую антенну, толку нет, и вслух он проговорил типа, что нет сегодня прохода. Тут на этой частоте слышу – а меня принимаете. Да принимаю. Оказался сосед его и всего с пяти ваттами и антенна такая, что я уже забыл (возможно, типа треугольника на 80). Мы провели радиосвязь, и он был приятно удивлен, зная, какая антенна и мощность у соседа. Не знаю, сколько там между ними метров, километров, но в том случае крутая антенна была бессильна.

Антенны на низкочастотные диапазоны

Были такие лабораторные работы и на 40 и на 80-метровые диапазоны.Все это в поисках а какая антенна лучше. И есть тут момент, где еще радиолюбителям есть возможность поработать над такой антенной, чтобы она была в любой момент времени оптимальна, а значит и идеальна. Отчасти радиолюбители используют некоторые моменты, которые должны быть заложены в идеальную антенну.

Самое простое это настройка по азимуту. Второе по углу излучения – ставим одинаковые антенны на разных мачтах, на разной высоте или на одной при этом коммутируя их в стеки. Получаем разные углы излучения. А также разные антенны с разной поляризацией некоторые имеют. Но это отчасти, а не в целом.

Да и некоторые скажут, а зачем такую антенну. Десять киловатт и первое место в кармане. Это да, ваш выбор. При этом вы обманываете не только всех, а в первую очередь самого себя. Или кто уже давно применяет такую антенну на КВ (на УКВ есть), где заложены свойства идеальной антенны.

Наши антенны

Какая у тебя антенна ? 84 метра 27 сантиметров и 28 метров кабеля. Ух ты, а у меня 32 сантиметра, надо укоротить попробовать как у тебя. Это наши разговоры об антеннах в эфире. Вот немного другой ответ: а у меня кабель метра три, я возле самого окна сижу, а за окном сразу антенна. Три плохо, ты сделай 28, знаешь, как классно будет работать антенна. А вот буквально вчера слышал, и разговор был между двумя радиолюбителями со стажем. И разговор велся о какой-то секретной антенне, о секретных размерах.

кв антенны

Для многих радиолюбителей эта тема была, есть и будет одной из самых востребованных. Какую антенну выбрать, какую купить. В том и другом случае нам её монтировать устанавливать, настраивать, здесь нам необходимы какие-то знания по антенной тематике, здесь помогут журналы книги по антенной тематике. Чтобы, в конце концов, мы поняли кое- что.

Антенна у радиолюбителя должна стоять одной из первых строк. Ксв — это не показатель и за ним и не надо гнаться в первую очередь. Что антенна с ксв=2 может намного лучше работать, чем с ксв=1. И кпд падает с увеличением элементов и многое другое.

кв антенны

Логопериодическая проволочная антенна для диапазона 40 метров. Все просто и эффективно.Несколько вариантов антенн «sloper» для низкочастотных диапазонов 40,80,160 метров. Сканируемая антенна RA6AA,настройка, используемые детали. В журнале Радиолюбитель 1 1991. Читать полностью.

Практика настройки и монтажа антенн. Подъем мачты. Варианты крепления полотен антенн к дереву.Настройка при помощи ГСС и лампового вольтметра в журнале Радиолюбитель 2 1991год.Читать.

В седьмом номере за 91 год журнала Радиолюбитель RA6AEG рассказывает о своей М антенне.

Вся эта информация в первую очередь ,уже имеющим позывной любительской радиостанции.Также всем остальным,кто еще не пришел на КВ.

Коротковолновики часто используют вертикальные антенны. Для установки таких антенн, как правило, требуется небольшое свободное пространство, поэтому для некоторых радиолюбителей особенно проживающих в густонаселённых городских микрорайонах) вертикальная антенна - единственная возможность выходить в эфир на коротких волнах.Одной из пока малоизвестных вертикальных антенн, работающих на всех КВ диапазонах, является антенна DX 2000. В благоприятных условиях антенну можно использовать для проведения DX - радиосвязей, но при работе с местными корреспондентами (на расстояниях до 300 км.) она уступает диполю. Как известно, вертикальная антенна, установленная над хорошо проводящей поверхностью, имеет почти идеальные "DX-свойства", т.е. очень низкий угол излучения. При этом не требуется высокая мачта.Многодиапазонные вертикальные антенны, как правило, конструируются с заградительными фильтрами (трапами) и работают они практически так же, как однодиапазонные четвертьволновые антенны. Применяющиеся в профессиональной КВ радиосвязи широкополосные вертикальные антенны не нашли большого отклика в КВ радиолюбительстве, но имеют интересные свойства. На рисунке изображены наиболее популярные у радиолюбителей вертикальные антенны -четвертьволновый излучатель, электрически удлинённый вертикальный излучатель и вертикальный излучатель с трапами. Пример т.н. экспоненциальной антенны приведён справа. Такая объёмная антенна имеет хорошую эффективность в полосе частот от 3,5 до 10 МГц и вполне удволетворительное согласование (КСВ<3) вплоть до верхней границы КВ диапазона (30 МГц). Очевидно, что КСВ = 2 - 3 для транзисторного передатчика очень нежелателен, но, учитывая широкое распространение в настоящее время антенных тюнеров (часто автоматических и встроенных в трансивер), с высоким КСВ в фидере антенны можно мириться. Для лампового усилителя , имеющего в выходном каскаде П - контур, как правило, КСВ = 2 - 3 не представляет проблемы. Вертикальная антенна DX 2000 является своеобразным гибридом узкополосной четвертьволновой антенны (Ground plane), настроенной в резонанс в некоторых любительских диапазонах, и широкополосной экспоненциальной антенны. Основа антенны-трубчатый излучатель длиной около 6 м. Он собран из алюминиевых труб диаметром 35 и 20 мм., вставленных друг в друга и образующих четвертьволовый излучатель на частоту примерно 7 МГц. Настройку антенны на частоту 3,6 МГц обеспечивает включённая последовательно катушка индуктивности 75 МкГн, к которой подсоединена тонкая алюминиевая трубка длиной 1,9 м. В согласующем устройстве используется катушка индуктивности 10 МкГн, к отводам которой подключается кабель. кроме того, к катушке подключены 4 боковых излучателя из медного провода в ПВХ-изоляции длиной 2480, 3500, 5000 и 5390 мм. Для крепления излучатели удлинены нейлоновыми шнурами, концы которых сходятся под катушкой 75 МкГн. При работе в диапазоне 80 м заземление или противовесы требуются обязательно, хотя бы для защиты от грозы. Для этого можно глубоко закопать в землю несколько оцинкованных полос. При монтаже антенны на крыше дома очень трудно найти какую-нибудь "землю" для КВ. Даже хорошо изготовленное заземление на крыше не имеет нулевого потенциала относительно "земли", поэтому для устройства заземления на бетонной крыше лучше использовать металлические
конструкции, имеющие большую площадь поверхности. В применяемом согласующем устройстве заземление подключается к выводу катушки, в которой индуктивность до отвода, куда подключается оплётка кабеля, составляет 2,2 МкГн. Столь малая индуктивность недостаточна для подавления токов, протекающих по наружной стороне оплётки коаксиального кабеля, поэтому следует изготовить запорный дроссель, свернув около 5 м кабеля в катушку диаметром 30 см.
Для эффективной работы любой четвертьволновой вертикальной антенны (в том числе, DX 2000) обязательно следует изготовить систему четвертьволновых противовесов. Антенна DX 2000 была изготовлена на радиостанции SP3PML (Войсковой клуб коротковолновиков и радиолюбителей PZK).

Эск из конструкции антенны приведён на рисунке. Излучатель был выполнен из прочных дюралевых труб диаметром 30 и 20 мм. Растяжки, служащие для крепления медных проводов-излучателей, должны быть устойчивы и к растяжению, и к погодным условиям. Диаметр медных проводов следует выбирать не более 3 мм (для ограничения собственного веса), и желательно использовать провода в изоляции, что обеспечит устойчивость к погодным условиям. Для фиксации антенны следует применять прочные изоляционные оттяжки, которые не растягиваются при изменении погодных условий. Распорки для медных проводов излучателейдолжны быть выполнены из диэлектрика (например, ПВХ-трубы диаметром 28 мм), но для повышения жёсткости их можно изготовить из деревянного бруска или другого, как можно более лёгкого материала. Вся конструкция антенны насаживается на стальную трубу не длиннее 1,5 м, предварительно жестко прикреплённую к основанию (крыше), например, стальными оттяжками. Антенный кабель может быть подключён через разъём, который, должен быть электрически изолирован от остальнойчасти конструкции. Для настройки антенны и согласования её импеданса с волновым сопротивлением коаксиального кабеля предназначены катушки индуктивностью 75 МкГн (узел А) и 10 МкГн (узел В). Антенну настраивают на требуемые участки КВ диапазонов подбором индуктивности катушек и положения отводов. Место установки антенны должно быть свободно от других конструций, лучше всего, на расстоянии 10-12 м, тогда влияние этих конструкций на электрические характеристики антенны невелико.

Дополнение к статье:
Если антенна установлена на крыше многоквартирного дома, высота её установки должна составлять
более двух метров от крыши до противовесов (в целях безопасности). Подсоединение заземления
антенны к общему заземлению жилого дома либо к каким либо арматуринам, составляющих кострукцию
крыши категорически не рекомендую (во избежание огромных взаимных помех). Заземление применять
лучше индивидуальное, расположенное в подвале дома. Протягивать его следует в коммуникационных
нишах строения или отдельной трубе, пришпиленной к стене снизу доверху.
Возможно применение грозоразрядника.

В. Баженов UA4CGR

Методика точного расчета длины кабеля

Конструкцию указанной антенны мне по эфиру сообщил лет 10...15 назад радиолюбитель В.Волий (UA6DL), за что я ему очень благодарен. Антенна работает до сих пор, и ее работой как резервной антенны я, в принципе, доволен. Измеренные значения КСВ для частоты 1,9 МГц - 1,9; для 3,6 МГц - 1,3; для 7,05 МГц-1,2; для 14,1 МГц -1,4; для 21,2 МГц -1,7; для 28,6 МГц - 1,6. Конструкция антенны показана на рис.1. Антенна представляет собой обыкновенный диполь с длиной луча 20,5 м. Антенна питается коаксиальным кабелем волновым сопротивлением 50...75 Ом. Для согласования применяется широкополосное согласующее устройство на ферритовом кольце и двухпроводная линия с волновым сопротивлением 300 Ом. Двухпроводная линия выполнена из телевизионного кабеля КАТВ длиной 17,7 м, разомкнутого на конце. Широкополосный трансформатор изготовлен на ферритовом кольце марки 30...50 ВЧ с наружным диаметром 24...32 мм - в зависимости от пропускаемой мощности (1 см поперечного сечения керна кольца способен передать без повреждения около 500 Вт). Если одного кольца недостаточно, берут два-три кольца, сложенных вместе. Кольцо (кольца) предварительно обматывают фторопластовой лентой. При максимальной мощности кольцо может нагреваться до 70°С. Коэффициент трансформации широкополосного трансформатора - 1:4. Для изготовления трансформатора на кольцо наматывается сложенный параллельно провод ПЭВ 00,8...1,0 или многожильный провод в виниловой или фторопластовой изоляции (не боится нагрева). Количество витков-9...10. После намотки конец одного провода соединяется с началом другого, образуя среднюю точку. Широкополосный трансформатор крепится на расстоянии 5,9 м от точки подключения диполя к двухпроводной линии. Трансформатор защищают от воздействия влаги, обматывая его изоляционным материалом и покрывая лаком. Полотно антенны изготовлено из оцинкованного провода диам. 2 мм, и, по-видимому, только поэтому она простояла столь длительное время в условиях кислотных дождей Донбасса.


Рис. 1

В принципе, плечи антенны можно выполнить из 5...8 скрученных медных проволочек марки ПЭВ 0,8 мм. Проверено - прочность хорошая. Горизонтальный проволочный волновой канал. Как гласит радиолюбительская мудрость, лучшим усилителем высокой частоты в трансивере (приемнике) является антенна. И это правда на 100%! Имея хорошую антенну, можно даже на самодельный трансивер работать с DX, и наоборот, на дорогой импортный трансивер и плохую антенну тех же корреспондентов высокой частоты "слабых" корреспондентов не "вытянешь". Для этих целей широко применяют антенны направленного действия, поскольку они позволяют сконцентрировать большую часть излучаемой электромагнитной энергии в определенном направлении, увеличивая тем самым напряженность поля в месте приема и уменьшая помехи в других направлениях, а также получать больший уровень сигнала при приеме с этого направления. Разумеется, наилучшим вариантом является установка вращающейся направленной антенны, однако не всем коротковолннокам доступны приобретение и установка такой антенны.



Рис.2

Предлагаю конструкцию компромиссного варианта однодиапазонной двухэлементной антенны "Волновой канал" (рис.2) с фиксированной диаграммой направленности. Антенна располагается в горизонтальной плоскости и обладает четко выраженными направленными свойствами. Конструкция антенны понятна из рисунка. В указанной антенне один вибратор активный - это полуволновой диполь, второй вибратор пассивный - директор. Ток в пассивном вибраторе создается за счет электромагнитной индукции полем активного вибратора. Изменяя длину пассивного вибратора и его расстояние от активного вибратора, можно менять относительную фазу тока в нем. На этом и основан принцип концентрации электромагнитной энергии в определенном направлении. Если фаза тока в пассивном вибраторе такова, что результирующее поле в направлении этого вибратора увеличивается, а в противоположном уменьшается, пассивный вибратор работает как директор. Такая антенна дает выигрыш по мощности около 5 дБ. Существенно и ослабление помех от радиостанций, находящихся перпендикулярно и сзади направления на корреспондента, которое у этой антенны составляет приблизительно 15 дБ. Антенна, изготовленная по приведенным размерам, как правило, в подгонке длины элементов и расстояния между ними не нуждается. Полотно антенны выполняется из медного канатика, медной, оцинкованной или бимметаллической проволоки диам. 2 мм. Если такой проволоки в наличии не оказалась, можно изготовить самодельный медный канатик из свитых с шагом 2-3 витка на 1 см 6...8 проводов ПЭВ-I или ПЭВ-II 0,7...0,8 мм. Концы канатика должно быть хорошо пропаяны. Такой самодельный канатик из провода довольно прочен. Естественно, перед установкой этой антенны радиолюбитель должен определить для себя наиболее интересующее направление излучения (приема). Конструктивные размеры антенны для каждого диапазона приведены в табл.1.

Само полотно антенны с помощью капронового (синтетического) шнура крепится к стационарным опорам, в качестве которых могут служить здания, жилые дома, высокие деревья и т.д. В качестве изоляторов применяют фарфоровые орешковые изоляторы. Однако, если такие изоляторы не удалось приобрести, их с успехом могут заменить самодельные изоляторы из текстолита или гетинакса. Для их изготовления берется изоляционный брусок(параллелепипед из текстолита, гетинакса и т.д.) подходящих размеров, и в нем сверлятся два отверстия по диаметру провода по углом 90°. Самодельные изоляторы обязательно должны работать на сжатие. В качестве фиксаторов расстояния (распорок) между директором и активным элементом служат изоляционные планки из бамбука (сосны, гетинакса или текстолита). Все соединения шнуром производятся только вязкой (узлы). Для защиты от влаги изоляторы и распорки покрывают изоляционным лаком. Конструкция этих изоляторов показана на рис.3.



Рис. 3

Простая эффективная антенна G3XAP на 160 и 80 м.

Дальняя связь на коротких волнах осуществляется за счет так называемой пространственной волны, которая отражается ионосферой и может иметь как вертикальную, так и горизонтальную поляризацию. При работе на диапазонах 160 и 80 м радиолюбители-коротковоновики используют как земные, так и пространственные волны. Именно поэтому желательно для этого диапазона иметь антенну с вертикальным излучением. Поскольку вертикальный четвертьволновой вибратор для диапазона 160 м трудно представить себе даже в воображении (его высота должна быть около 40 м!), антенну на низкочастотные диапазоны приходится изготавливать компромиссной. Ее излучатель состоит из горизонтальных и вертикальных проводников (рис. 4), или излучатель располагают под углом к горизонту.



Рис. 4

Естественно, чем больше высота вертикальной части антенны, тем выше ее эффективность. Кроме того, эффективность вертикальной U4 антенны во многом зависит от качества заземления. Лучше всего использовать специальное заземление - вбитый в сырую землю штырь, закопанный лист оцинкованного железа и т.д. В крайнем случае можно использовать закрепленные в грунте металлические конструкции. Недопустимо использовать в качестве такого заземления трубы водопровода и отопления, т.к. помимо низкого качества работы такого заземления, возможны сильные помехи приему радио и телевидения, а также ожоги токами высокой частоты людей при прикосновении к трубопроводам. Предлагаемая антенна в конце 80-х годов была повторена Юрием, US31VZ, ex RB41VZ. Активно работая SSB на диапазоне 160 м, за один год он получил QSL из 150 областей бывшего СССР. US3IVZ применяет эту антенну без противовесов. Для более эффективной работы она должна иметь противовесы. Стальная труба диаметром 2 дюйма установлена на небольшом опорном изоляторе, в качестве которого можно использовать фарфоровый изолятор, применяемый в электроустановках, или просто положив под вертикальную трубу лист изоляционного материала. Для настройки антенны используют конденсатор переменной емкости С^^=500 пФ, имеющий зазор между пластинами не менее 1...2 мм (в зависимости от мощности РА). О качестве согласования судят по показаниям КСВ-метра. Входное сопротивление такой антенны равно примерно 60 Ом (в зависимости от качества "земли"), поэтому желательно запитать ее коаксиальным кабелем с волновым сопротивлением 50 Ом. При тщательной настройке антенны достижим КСВ=1,1...1,2. Размеры антенны приведены в табл.2.

Диапазон, м

В.БАШКАТОВ, USOIZ, г.Горловка, Донецкой обл.

Литература

1. С.Г.Бунин, Л.П.Яйленко. Справочник радиолюбителя-коротковолновика. - Киев,"Техника", 1984.

← Вернуться

×
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:
Я уже подписан на сообщество «rmgvozdi.ru»