Вещество, которое в водном растворе не диссоциирует на ионы. Электролитические диссоциация и ассоциация

Подписаться
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:

Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеющую цвета (при малой толщине слоя), запаха и вкуса. В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном - водяным паром. Вода также может существовать в виде жидких кристаллов (на гидрофильных поверхностях). Составляет приблизительно около 0,05 % массы Земли.

Водный раствор - разновидность раствора, в котором растворителем служит вода. Будучи превосходным растворителем, именно вода используется для приготовления большинства растворов в химии.

Вещества, которые плохо растворяются в воде, называют гидрофобными ("боящимися воды"), а хорошо в ней растворяющиеся - гидрофильными ("любящими воду"). Примером типичного гидрофильного соединения может служить хлорид натрия (поваренная соль).

Если вещество образует водный раствор, который хорошо проводит электрический ток, то он называется сильным электролитом; в противном случае - слабым. Сильные электролиты в растворе почти полностью распадаются на ионы (α→1), а слабые практически не распадаются (α→0).

Вещества, растворяющиеся в воде, но не распадающиеся на ионы (то есть находящие в растворе в молекулярном состоянии), называются неэлектролитами (пример - сахар).

При выполнении расчётов в уравнениях реакций, где взаимодействует один или несколько водных растворов, часто необходимо знать молярную концентрацию растворимого вещества.

Растворимость - способность вещества образовывать с другими веществами однородные системы - растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц. Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ (мл) растворителя (г/100 г или см³/100 см³). Растворимость газов в жидкости зависит от температуры и давления. Растворимость жидких и твёрдых веществ - практически только от температуры. Все вещества в той или иной степени растворимы в растворителях. В случае, когда растворимость слишком мала для измерения, говорят, что вещество нерастворимо.

Зависимость растворимости веществ от температуры выражается с помощью кривых растворимости. По кривым растворимости производят различные расчёты. Например, можно определить массу вещества, которое выпадет в осадок из насыщенного раствора при его охлаждении.

Процесс выделения твёрдого вещества из насыщенного раствора при понижении температуры называется кристаллизацией. Кристаллизация играет огромную роль в природе-приводит к образованию некоторых минералов, участвует в процессах, протекающих в горных породах.

Состав любого раствора может быть выражен как качественно, так и количественно. Обычно, при качественной оценке раствора применяют такие понятия как, насыщенный , ненасыщенный , пересыщенный (или перенасыщенный ), концентрированный и разбавленный раствор.

Насыщенным называется раствор, в котором содержится максимально возможное при данных условиях (t, р) количество растворённого вещества. Насыщенный раствор часто находится в состоянии динамического равновесия с избытком растворённого вещества, при котором процесс растворения и процесс кристаллизации (выпадения вещества из раствора) протекают с одинаковой скоростью.

Для приготовления насыщенного раствора растворение вещества необходимо вести до образования осадка, не исчезающего при длительном хранении.

Ненасыщенным называется раствор, который содержит вещества меньше, чем его может раствориться при данных условиях.

Перенасыщенные растворы содержат в себе по массе больше растворённого вещества, чем его может раствориться в данных условиях. Образуются перенасыщенные растворы при быстром охлаждении насыщенных растворов. Они неустойчивы и могут существовать ограниченное время. Очень быстро лишнее растворённое вещество выпадает в осадок, а раствор превращается в насыщенный.

Следует отметить, что при изменении температуры насыщенный и ненасыщенный растворы могут легко обратимо превращаться друг в друга. Процесс выделения твёрдого вещества из насыщенного раствора при понижении температуры называется кристаллизацией . Кристаллизация и растворение играют огромную роль в природе: приводят к образованию минералов, имеют большое значение в атмосферных и почвенных явлениях. На основе кристаллизации в химии распространён метод очистки веществ, который называется перекристаллизацией.

Для приблизительного количественного выражения состава раствора используют понятия концентрированный и разбавленный растворы .

Концентрированным называется раствор, в котором масса растворённого вещества соизмерима с массой растворителя, т.е. не отличается от него более чем в 10 раз.

Если же масса растворённого вещества более чем в десять раз меньше массы растворителя, то такие растворы называются разбавленными .

Однако следует помнить, что деление растворов на концентрированные и разбавленные условно, и чёткой границы между ними нет.

Точный количественный состав растворов выражают при помощи массовой доли растворённого вещества , его молярной концентрации , а также некоторыми другими способами.

Уникальные особенности водных растворов

Водный раствор представляет собой раствор, который взаимодействует с водой. Что делает воду существенной, так как она может позволить веществам растворяться и / или диссоциировать на ионы внутри нее.

Электролиты

Вода обычно представляет собой растворитель, содержащийся в водном растворе, где растворителем является вещество, которое растворяет растворенное вещество. Растворённое вещество представляет собой вещество или соединение, растворенное в растворителе. Раствор имеет меньшее количество частиц, чем растворитель, где частицы находятся в случайном движении. Интересно, что водные растворы с ионами в некоторой степени проводят электричество. Чистая вода с очень низкой концентрацией ионов не может проводить электричество. Когда растворенное вещество диссоциирует в воде с образованием ионов, его называют электролитом из-за того, что раствор является хорошим электрическим проводником. Когда никакие ионы не образуются или содержание ионов невелико, растворенное вещество является неэлектролитом. Неэлектролиты не проводят электричество или проводят его в очень малой степени.

В водном растворе сильный электролит считается полностью ионизированным или диссоциированным в воде, то есть он растворим. Сильные кислоты и основания обычно являются сильными электролитами. Тогда слабый электролит считается не полностью диссоциированным, поэтому он все еще содержит целые соединения и ионы в растворе. Слабые кислоты и основания обычно являются слабыми электролитами. Другими словами, сильные электролиты имеют лучшую тенденцию подавать ионы в водный раствор, чем слабые электролиты, и поэтому сильные электролиты создают водный раствор, который является лучшим проводником электричества.

Пример

MgCl 2 в воде:

M g C l 2 → M g 2 + (a q ) + 2 C l − (a q )

Ионное соединение полностью диссоциирует с образованием ионов в воде, поэтому он является сильным электролитом.

Теперь давайте посмотрим на слабый электролит:

H C 2 H 3 O 2 (a q ) ⇌ H + (a q ) + C 2 H 3 O 2 − (a q )

В этой ситуации ионное соединение, (HC 2 H 3 O 2), лишь частично диссоциирует, что выражается двойными стрелками в реакции. Это означает, что реакция обратима и никогда не заканчивается. HC 2 H 3 O 2 в этой ситуации лишь частично диссоциирует, что выражается двойными стрелками в реакции. Это означает, что реакция обратима и никогда не заканчивается.

He \ (H ^ + \) катион является протоном, который взаимодействует с молекулами \ (H_2O \), в которые он погружен. Взаимодействие называется H + H +. Катион является протоном, который взаимодействует с молекулами H 2 OH 2 O, погруженным в. Это взаимодействие называется гидратацией. Фактический ион Н + не существует в водном растворе. Это ион гидроня, \ (H_3O ^ + \), который взаимодействует с водой, создает дополнительные виды, такие как \ (H_5O_2 ^ + \), \ (H_9O_4 ^ + \) и \ (H_7O_3 ^ + \). \ (H_3O ^ + \) можно просто описать как гидратацию одного H H3O + H3O +, который взаимодействует с водой для создания дополнительных видов, таких как H 5 O + 2H 5 O 2 + , H 9 O + 4H 9 O 4 + и H 7 O + 3H 7 O 3 + . H 3 O + H 3 O + можно просто описать как гидратацию одной H + и одной молекулы воды. Для неэлектролитов все, что нужно сделать, это написать молекулярную формулу, потому что не происходит никакой реакции или диссоциации. Одним из примеров неэлектролита является сахар: записывается как \ (C_6H_ {12} O_6 (aq) \). C6H12O6 (водн.) C6H12O6 (водн.).

Концентрации ионов

В водном растворе количество ионов вида связано с количеством молей этого вида на концентрацию вещества в водном растворе. Молярность — это число молей растворенного вещества (n), деленного на общий объем (V) решения: (n), деленный на общий объем (V) решения:

Молярность или концентрация могут быть представлены путем размещения растворенного вещества в скобках () для концентрации ионов хлорида. для концентрации Хлорид-ионы.

Реакции осаждения

Реакции осаждения происходят, когда катионы и анионы в водном растворе объединяются с образованием нерастворимого ионного твердого вещества, называемого осадком. Независимо от того, происходит ли такая реакция, можно определить, используя правила растворимости для обычных ионных твердых тел. Поскольку не все водные реакции образуют осадки, перед определением состояния продуктов и написанием чистого ионного уравнения необходимо проконсультироваться с правилами растворимости. Способность прогнозировать эти реакции позволяет ученым определять, какие из ионов присутствуют в растворе, и позволяет отраслям создавать химические вещества путем извлечения компонентов из этих реакций.

Свойства осадков


схема образования осадка в растворе.

Осадки представляют собой нерастворимые ионные твердые продукты реакции, образующиеся, когда определенные катионы и анионы объединяются в водном растворе. Определяющие факторы образования осадка могут меняться. Некоторые реакции зависят от температуры, например, от растворов, используемых для буферов, тогда как другие зависят только от концентрации раствора. Твердые вещества, полученные в реакциях осаждения, представляют собой кристаллические твердые вещества и могут суспендироваться по всей жидкости или падать на дно раствора. Оставшаяся жидкость называется супернатантной жидкостью. Два компонента смеси (осадок и супернатант) могут быть разделены различными способами, такими как фильтрация, центрифугирование или декантирование.

Реакции осаждения и двойной замены

Использование правил растворимости требует понимания того, как реагируют ионы. Большинство реакций осаждения являются реакциями с одной заменой или реакциями с двойной заменой. Реакция двойной замены происходит, когда два ионных реагента диссоциируют и связывают с соответствующим анионом или катионом из другого реагента. Ионы заменяют друг друга на основе их зарядов как катион или анион. Это можно рассматривать как «коммутаторы». То есть два реагента, каждый из которых «теряет» своего партнера и формирует связь с другим партнером.

Реакция с двойной заменой конкретно классифицируется как реакция осаждения, когда рассматриваемое химическое уравнение происходит в водном растворе, и один из образованных продуктов является нерастворимым. Ниже приведен пример реакции осаждения:

Оба реагента являются водными и один продукт является твердым. Поскольку реагенты являются ионными и водными, они диссоциируют и поэтому растворимы. Тем не менее, существует шесть рекомендаций по растворимости, которые используются для прогнозирования того, какие молекулы нерастворимы в воде. Эти молекулы образуют твердый осадок в растворе.

Правила растворения

  1. Соли, образованные катионами группы 1 и катионами NH + 4 NH + 4 , являются растворимыми. Существуют некоторые исключения для некоторых солей Li + .
  2. Растворимы ацетаты (C 2 H 3 O-2C 2 H 3 O 2 —), нитраты (NO — 3 NO 3 —) и перхлораты (ClO — 4 ClO 4 —).
  3. Бромиды, хлориды и иодиды растворимы.
  4. Сульфаты (SO 2 — 4SO 4 2-) растворимы, за исключением сульфатов, образованных с Ca 2+ Ca 2+ , Sr 2+ Sr 2+ и Ba 2+ Ba 2+ .
  5. Соли, содержащие серебро, свинец и ртуть (I), нерастворимы.
  6. Карбонаты (CO 2- 3 CO 2- 3), фосфаты (PO 3- 4 PO 4 3-), сульфиды, оксиды и гидроксиды (OH — OH —) нерастворимы. Исключение составляют сульфиды, образованные катионами и гидроксидами группы 2, образованными кальцием, стронцием и барием.

Если в правилах указывается, что ион растворим, то он остается в форме водного иона. Если ион нерастворим в соответствии с правилами растворимости, он образует твердое вещество с ионом из другого реагента. Если показано, что все ионы в реакции растворимы, то реакция осаждения не происходит.

Ионные уравнения

Чтобы понять определение чистого ионного уравнения, напомним уравнение для реакции двойной замены. Поскольку эта конкретная реакция представляет собой реакцию осаждения, состояния материи могут быть назначены каждой переменной паре:

Первым шагом к написанию чистого ионного уравнения является отделение растворимых (водных) реагентов и продуктов в их соответствующие катионы и анионы. Осадки не диссоциируют в воде, поэтому твердое вещество не должно разделяться. Полученное уравнение выглядит так:

В приведенном выше уравнении на обеих сторонах уравнения присутствуют А + и Д — ионы. Они называются зрительными ионами, поскольку они остаются неизменными в течение всей реакции. Поскольку они проходят через неизмененное уравнение, их можно устранить, чтобы показать чистое ионное уравнение:

Чистое ионное уравнение показывает только реакцию осаждения. Чистое ионное уравнение должно быть сбалансировано с обеих сторон не только с точки зрения атомов элементов, но и с точки зрения электрического заряда. Реакции осаждения обычно представлены исключительно чистыми ионными уравнениями. Если все продукты являются водными, чистое ионное уравнение не может быть записано, потому что все ионы нейтрализуются как зрительные ионы. Поэтому реакция осаждения не происходит.

Практические проблемы

Напишите чистое ионное уравнение для реакций потенциального двойного смещения. Не забудьте включить состояния материи и сбалансировать уравнения.

1. Независимо от физического состояния продуктами этой реакции являются Fe(OH) 3 и NaNO3. Правила растворимости предсказывают, что NaNO 3 растворима, поскольку все нитраты растворимы. Однако Fe(OH) 3 нерастворим, поскольку гидроксиды нерастворимы, и Fe не является одним из катионов, что приводит к исключению. После диссоциации ионное уравнение выглядит следующим образом:

Отмена зрительных ионов оставляет чистое ионное уравнение.

Образование осадка сводится к взаимодействию ионов Ag + и С L - , так как образуется малодиссоциирующее соединение(краткое ионное уравнение)

Ag + + CL - = AgCL

Полное ионное уравнение имеет вид:

Na + + C
+ Ag + +
= AgCL +Na + +

Реакция с образованием газов

Na 2 S + 2HCL1 = 2NaCL + H 2 S

Для простоты и удобства напишем сразу уравнение реакции в сокращенной форме:

2H + +
=H 2 S

если одно из взятых веществ является трудно растворимым в воде (неэлектролит), то формула этого вещества записывается в молекулярной форме:

Ca 3 P 2 + 6HNO 3 = 3Ca(NO 3) 2 + 2PH 3

Ca 3 P 2 + 6H + = 3Ca 2+ + 2PH 3

Реакция с образованием слабых электролитов.К слабым электролитам относятся вещества со степенью диссоциации меньше 2%, например вода, слабые кислоты, трудно растворимые основания соли и др.

Пример1. Ca(HCO 3 ) 2 + 2HBr = CaBr 2 +2H 2 O + 2CO 2

HC+ H + = H 2 O + CO 2

Пример2. 2CrOHSO 4 +H 2 SO 4 = Cr 2 (SO 4 ) 3 + 2H 2 O

CrOH 2+ + H + = Cr 3+ + H 2

Тема:Гидролиз солей

Гидролиз соли - это реакция обмена ионов соли с ионами воды.

При гидролизе смещается равновесие диссоциации воды вслед­ствие связывания одного из ионов в слабый электролит.

При связывании ионов Н + в растворе накапливаются ионы
, реакция среды будет щелочная, а при связывании ионов
накапливаются ионы Н + - среда кислая.

Разберем случаи гидролиза, пользуясь понятиями «слабый» и «сильный» электролит.

I. Соль образована сильным основанием и сильной кислотой (гидролизу не подвергается). При растворении в воде в присутст­вии индикатора лакмуса нитрата калия окраска лакмуса не из­меняется. Уравнение реакции в молекулярной и ионной формах имеет вид:

KNO 3 +H 2 O
KOH+HNO 3

K = +N+HOH
K + +O
+H + +N

Среда нейтральная, так как ионы Н + и ОН" не связываются дру­гими зонами в слабый электролит.

П. Соль образована сильным основанием и слабой кислотой (гидролиз протекает по аниону). Это имеет место при гидролизе соли
. При диссоциации ионы соли
и
взаимодей­ствуют с ионами Н + и
из воды. При этом ацетат-ионы (
) связываются с ионами водорода + ) в молекулы сла­бого электролита - уксусной кислоты (СН 3 СООН) , а ионы
накапливаются в растворе, сообщая ему щелочную реак­цию, так как ионы К + не могут связать ионы
(КОН яв­ляется сильным электролитом).

Уравнения гидролиза соли СН 3 СООК будут иметь следующий вид:

в молекулярной форме

в ионной форме

в сокращенной ионной форме

Соль образована слабым основанием и сильной кислотой (гидролиз протекает по катиону). Это имеет место при гидролизе соли NH 4 C 1 (NH 4 OH - слабое основание, НС1 - сильная кислота), Отбросим ион
, так как он с катионом воды дает сильный элей тролит, тогда в сокращенной ионной форме уравнение гидролиза примет следующий вид:

В молекулярной форме:

Ионы OH - связываются в слабый электролит, а ионы H + накапливаются – среда кислая.

Соль образована основанием и слабой кислотой(гидролиз протекает по катиону аниону). Это имеет место при гидролизе соли CH 3 COONH 4 . Запишем уравнение в ионной форме:

Образуется слабое основание и слабая кислота. Степень диссоциация которых приблизительно одинакова. Поэтому при наличии гидролиза среда будет приблизительно нейтральная.

тема: Неметаллы

Общая характеристика неметаллов. Число неметаллов, известных в природе, по сравнению с металлами относительно невелико. Их размещение в периодической системе химических элементов Д. И. Менделеева показано в таблице 5.

Из таблицы 5 видно, что элементы - неметаллы в основном расположены в правой верхней части периодической системы химических элементов Д. И. Менделеева. Так как в периодах постепенно увеличиваются заряды ядер атомов элементов и уменьшаются атомные радиусы, а в главных подгруппах с увеличением порядков номера элемента атомные радиусы резко возрастают, то становиться понятным, почему атомы неметаллов сильнее притягивают внешние электроны по сравнению с атомами металлов. Таким образом, у неметаллов преобладают окислительные свойства, т. е. способность присоединять электроны. Особо ярко эти свойства важны у неметаллов VII и VI групп главных подгрупп 2-го и 3-го периодов. Самый сильный окислитель – фтор. Окислительные способности элементов – неметаллов зависят от численного значения электроотрицательности и увеличиваются в следующем порядке:

Si, B, H, P, C, S, I, N, Cl, O, F

Такая же закономерность в изменении окислительных свойств характерна для соответствующих простых веществ. Ее можно наблюдать в реакциях указанных неметаллов с водородом и металлами. Так, фтор более энергично реагирует с водородом и металлами:

Кислород реагирует менее энергично:

Фор как самый активный неметалл в химических реакциях вообще не проявляет восстановительных свойств, т. е. фтор не способен отдавать электроны.

Кислород же в соединение с фтором (

) проявляет положительную степень окисления, т. е. может быть восстановителем.

Восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами, проявляют и все остальные элементы – неметаллы и соответствующие им простые вещества, причем эти свойства постепенно возрастают от кислорода к кремнию:

O, Cl, N, I, S, C, P, H, B, Si

Например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить оксид хлора , в которых хлор проявляет положительную степень окисления. Азот, как вам известно (II), при высокой температуре непосредственно соединяется с кислородом и проявляет при этом восстановительные свойства:

Еще энергичнее с кислородом реагирует сера:

причем сера примерно в равной степени проявляет как восстановительные, так и окислительные свойства. Так, при нагревании паров серы с водородом происходит реакция:

Тема:Металлы.

Чистые металлы в твердом состоянии - это кристаллы, в кото­рых частицы вещества расположены в определенном геометричес­ком порядке, образуя кристаллическую решетку, в узлах которой находятся положительно заряженные ионы и нейтральные атомы, а между ними перемещаются свободные электроны.

Атомы в кристаллической решетке металлов расположены очень близко друг к другу и их внешние электроны могут переме­щаться не только вокруг одного атома, а вокруг многих. Таким об­разом, внешние электроны свободно перемещаются по всему метал­лу» образуя так называемый «электронный газ».

Существование свободных электронов в металлах подтвержда­ется тем, что металлы обладают большой электрической проводи­мостью, при нагревании все металлы испускают поток свободных электронов.

Все металлы, за исключением ртути, при обычных условиях, твердые вещества. В компактном состоянии (в виде пластинки, слитка) для металлов характерен металлический блеск из-за отра­жения света от их поверхности. В тонкоизмельченном состоянии металлический блеск сохраняют только магний и алюминий, по­рошки остальных металлов черного или темно-серого цвета.

Большинство металлов имеют белый серебристый цвет, не прозрачны (так как почти все они в одинаковой мере поглощают лучи длинных и коротких волн света). Цезий и золото - желтого цвета, медь - желто-красного.

В технике металлы принято делить на группы:

по цвету - черные (железо, хром, марганец и их сплавы); цветные - все остальные;

по плотности - легкие - плотность меньше 5 г/см 8 (литий, калий, кальций, алюминий и др.); тяжелые - плотность больше 5 г/см 3 (олово, свинец, ртуть, железо и др.). Самым легким металлом является литий (пл. 0,53), самым тяжелым - осмий (пл. 22,5);

по температуре плавления - легкоплавкие - т. пл. 350. °С и ниже (свинец 327 °С, олово 232 °С, натрий 98 °С, калий 63 °С, цезий 28 °С и др.); тугоплавкие - т. пл. выше 350 °С (железо 1539 °С, хром 1875 °С). Самый тугоплавкий металл вольфрам, т. пл. 3380 °С. 4

Важными физическими свойствами металлов являются электрическая проводимость и теплопроводность, которые обусловлены наличием во всех металлах свободных электронов.

Наибольшую электрическую проводимость имеет серебро, затем медь, золото, хром, алюминий, магний.

Из механических свойств для металлов характерны пла­стичность, ковкость, тягучесть:

пластичность - это свойство металлов деформироваться без трещин, под действием определенной нагрузки;

ковкость - это свойство металлов деформироваться без трещин под влиянием сжатия при температуре ниже температуры плавле­ния металла;

тягучесть -способность металлов вытягиваться в нить.

Металлы с малой тягучестью хрупки, а металлы с большой тягу­честью устойчивы на разрыв.

Наибольшей пластичностью, ковкостью и тягучестью обладает золото: из него можно изготовить пластинки толщиной 0,003 мм и вытягивать в проволоку, невидимую невооруженным глазом. В наи­меньшей степени этими качествами обладают висмут и марганец.

Общим, присущим исключительно металлам, химическим свой­ством является способность только отдавать электроны, превра­щаясь в свободные, положительно заряженные ионы:

Способность отдавать электроны выражена у металлов по-раз­ному. Мерой прочности связи электронов в атомах является энергия ионизации. Наименьшей энергией ионизации обладают щелочные металлы, поэтому они являются энергичными восстановителями.

Восстановительными свойствами металлов обусловлена их спо­собность вступать в реакции с различными окислителями: неметал­лами, кислотами, солями менее активных металлов.

Названия всех соединений металлов с неметаллами оканчивают­ся на -ид (оксид, хлорид, нитрид, сульфид и т. д.).

1. Металлы взаимодействуют с неметаллами:

а) большинство металлов хорошо реагируют с кислородом, да­вая оксиды:

б) легко соединяются с галогенами, образуя галогениды:

2 Fe + 3 Cl 2 = 2 FeCl 3

в) с азотом металлы образуют нитриды:

г) при определенных условиях металлы взаимодействуют с се­рой, образуя сульфиды:

д) с водородом взаимодействуют непосредственно только щелоч­ные и щелочно-земельные металлы, образуя гидриды:

П

о степени легкости отдачи электронов в растворах металлы располагают в ряд (ряд стандартных электродных потенциалов)

Вода – это неорганическое соединение, состоящее из кислорода и водорода. В нормальных условиях это бесцветная, прозрачная жидкость, которая не имеет запаха и вкуса. В твердом виде вода называется снегом, льдом или инеем, в газообразном – паром. Примерно 71% всей поверхности планеты покрыт водой. На океаны припадает примерно 96% водных запасов, на остальные 4% припадают озера, ледники, болота и грунтовые воды. По своей природе вода является отличным растворителем и всегда в своем составе содержит растворенные вещества или газы, за исключением дистиллированной воды. Вода является важнейшим источником жизни на всей планете. Поэтому в нашей статье мы попытаемся рассказать вам все об этом удивительном веществе, а главное, какое вещество вода по своей природе и каковы ее химические и физические свойства.

Физические свойства воды

  • При нормальных атмосферных условиях вода сохраняет жидкое состояние, в то же время как остальные водородные соединения схожего плана являются газами. Это явление объясняется особыми свойствами сложения молекул и атомов воды, и присутствующими между ними связями. Атомы кислорода присоединены к атомам водорода, образуя угол почти в 105 градусов, и данная конфигурация сохраняется всегда. Через большую разницу электроотрицательности атомов кислорода и водорода, электронные облака сильно сдвинуты в сторону кислорода. В связи с данной причиной молекула воды считается активным диполем, в котором водородная сторона имеет положительный заряд, а кислородная отрицательный. В результате молекула воды образует связи, разорвать которые довольно сложно и на это потребуются большие затраты энергии.
  • Вода практически не поддается сжиманию. Так, при увеличении атмосферного давления на один бар, вода сжимается лишь на 0.00005 часть, от ее первоначального объема.
  • Структура льда и воды очень схожи. Как во льду, так и в воде, молекулы стараются расположиться в некотором определенном порядке – они хотят образовать структуру, но тепловое движение препятствует этому. Когда вода переходит в твердое состояние, тепловое вращение молекул уже не препятствует структурному образованию, после чего молекулы упорядочиваются, и пустоты между ними увеличиваются, от чего, следовательно, падает плотность. Вот чем объясняется тот момент, что вода – это вещество очень аномальное. Твердое агрегатное состояние воды – лед, может спокойно плавать на поверхности жидкого агрегатного состояния воды. Когда же происходит испарение, наоборот, все связи сразу же разрываются. На разрыв данных связей требуется немаленькое количество энергии, что объясняет наибольшую теплоемкость воды среди всех веществ. Чтобы подогреть литр воды на 1 градус, необходимо потратить около 4 кДж энергии. Благодаря этому свойству вода часто используется в качестве теплоносителя.
  • Вода обладает высоким поверхностным натяжением, уступая в данном показателе лишь ртути. Большая вязкость воды объясняется ее водородными связями, которые мешают молекулам совершать движения с разными скоростями.
  • Вода является хорошим растворителем. Молекулы растворяемого вещества сразу же окружаются молекулами воды. Положительные частицы растворяемого вещества притягиваются атомами кислорода, а отрицательные – атомами водорода. Так как размеры молекул воды достаточно малы, то каждую молекулу растворяемого вещества может окружить сразу большое количество молекул воды.
  • Вода - это вещество, которое имеет отрицательный электрический потенциал поверхности.
  • В чистом виде, вода является хорошим изолятором, но так как в ней зачастую растворены те или иные вещества, соли или кислоты, то в воде всегда находятся отрицательные и положительные ионы. Благодаря этим свойствам вода может проводить электричество.
  • Показатель преломления воды – n=1.33. Но вода прекрасно поглощает инфракрасное излучение, и в связи с этим свойством вода, а точнее водяной пар является парниковым газом. Также вода способна поглотить микроволновое излучение, на чем и основано действие СВЧ печей.

Химические свойства

Те, кто думают, что вода - органическое вещество, сильно ошибаются. Воду образуют два элемента – кислород и водород. Далее рассмотрим основные химические свойства воды.

Электролиты и неэлектролиты

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других - нет.

Вещества, растворы которых проводят электрический ток, называются электролитами .

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами . Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов , которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией .

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы . Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения . В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.


Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.


Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu 2+ - белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu 2+ nH 2 O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации , ко­торая обозначается греческой буквой а («альфа»).

Это отношение числа частиц, распавшихся на ионы (N g), к общему числу растворенных частиц (N p).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы. Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты - это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H 2 SO 4 , HCl, HNO 3 ;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты - это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты - H 2 S, H 2 CO 3 , HNO 2 ;

2) водный раствор аммиака NH 3 H 2 O;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамичес­кое равновесие между недиссоциированными моле­кулами и ионами . Например, для уксусной кислоты:

Можно применить к этому равновесию закон действующих масс и записать выражение констан­ты равновесия:

Константу равновесия, характеризующую про­цесс диссоциации слабого электролита, называют константой диссоциации .

Константа диссоциации характеризует способ­ность электролита (кислоты, основания, воды) диссо­циировать на ионы . Чем больше константа, тем лег­че электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссо­циируют (распадаются) на положительные и отри­цательные ионы.

Ионы - это одна из форм существования хими­ческого элемента. Например, атомы металла натрия Na 0 энергично взаимодейству­ют с водой, образуя при этом щелочь (NaOH) и водород Н 2 , в то время как ионы натрия Na + таких продуктов не обра­зуют. Хлор Cl 2 имеет желто­зеленый цвет и резкий запах, ядовит, а ионы хлора Cl — бесцветны, не ядовиты, лишены запаха.

Ионы - это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые - Cl — , Na + и сложные - NH 4 + , SO 2 — .

2. Причиной диссоциации электролита в вод­ных растворах является его гидратация, т. е. взаи­модействие электролита с молекулами воды и раз­рыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами во­ды, ионы. Следовательно, по наличию водной обо­лочки ионы делятся на гидратированные (в раствоpax и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положитель­но заряженные ионы движутся к отрицательному по­люсу источника тока - катоду и поэтому называют­ся катионами, а отрицательно заряженные ионы движутся к положительному полюсу ис­точника тока - аноду и по­этому называются анионами.

Следовательно, существу­ет еще одна классификация ионов - по знаку их заряда .

Сумма зарядов катионов (Н + , Na + , NH 4 + , Cu 2+) равна сумме зарядов анионов (Cl — , OH — , SO 4 2-), вследствие че­го растворы электролитов (HCl, (NH 4) 2 SO 4 , NaOH, CuSO 4) остаются электронейтральными.

4. Электролитическая диссоциация - процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад элек­тролита на ионы) протекает и обратный процесс - ассоциация (соединение ионов). Поэтому в уравне­ниях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

5. Не все электролиты в одинаковой мере диссо­циируют на ионы.

Зависит от природы элек­тролита и его концентрации. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH 3 COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H + .

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H 3 O +). Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др. связаны с присутствием в их рас­творах гидроксид-ионов OH — , а свойства солей - с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами . Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями , а уравнения этих реак­ций - ионными уравнениями .

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо , до конца.

2. Обратимо , то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима , т. к. один из ее про­дуктов - нерастворимое вещество.

Реакция нейтрализации необратима , т. к. об­разуется малодиссоциирующее вещество - вода.

Реакция необратима , т. к. образуется газ CO 2 и малодиссоциирующее вещество - вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита - H 2 O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества - сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

← Вернуться

×
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:
Я уже подписан на сообщество «rmgvozdi.ru»