Внутреннее строение металлов и сплавов кратко. Внутреннее строение сплавов. Металлы под микроскопом

Подписаться
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:

Введение

Металлы -- простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро - и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны (блеск и непрозрачность), высокой прочностью и пластичностью.

Свойства металлов могут значительно измениться при очень высоких давлениях. Многие металлы в зависимости от температуры и давления могут существовать в виде нескольких кристаллических модификаций.

Подобными металлическими свойствами обладают более 80 химических элементов и множество металлических сплавов. Число металлических сплавов, применяемых в технике, исчисляется тысячами и постоянно возрастает в соответствии с возникающими новыми и разнообразными требованиями, предъявляемыми многими отраслями промышленности.

Свойства металлов обусловлены их кристаллическим строением и наличием в их кристаллической решетке многочисленных не связанных с атомными ядрами подвижных электронов проводимости.

Металлические сплавы по свойствам имеют много общего с металлами, поэтому их нередко относят к металлам.

Металлы (сплавы) в промышленности разделяют на две основные группы: черные и цветные металлы.

Черные металлы -- сплав железа с углеродом, в котором могут содержаться в большем или меньшем количестве и другие химические элементы. Кобальт, никель, а также близкий к ним по свойствам марганец нередко относят к черным металлам. Черные металлы получили наибольшее распространение, что обусловлено относительно высоким содержанием железа в земной коре, его низкой стоимостью, высокими механическими и технологическими свойствами.

Цветные металлы по свойствам подразделяют на следующие группы:

легкие (Be, Mg, Al, Ti), обладающие сравнительно малой плотностью -- до 5000 кг/м 3 ;

тугоплавкие (Ti, Сг, Zr, Nb, Mo, W, V и др.) с температурой плавления выше, чем у железа (1539°С);

благородные (Ph, Pd, Ag, Os, Pt, Аи и др.), обладающие химическойинертностью:

урановые (U, Th, Pa) -- актиноиды, используемые в атомной технике;

редкоземельные металлы (РЗМ), лантаноиды (Се, Рг, Nd, Sm и др.) и сходные с ними иттрий и скандий, применяемые как присадки к различным сплавам;

щелочноземельные металлы (Li, Na, К), используемые в качестве теплоносителей в ядерных реакторах.

Классификация металлических сплавов по химическому составу, основанная на указании главного компонента сплава (железо, медь, алюминий и др.), имеет традиционный характер, и получила наибольшее распространение.

Макро-, микро- и атомную структуру металлов и сплавов изучает металлография.

Макроструктура - это строение металла, видимое невооруженным глазом или с помощью лупы в изломе или на протравленном шлифе. Микроструктура строения металла, наблюдаемое под оптическим или электронным микроскопами, позволяющими увеличить рассматриваемый участок от десяти раз до сотен тысяч раз.

Атомная структура металлов - это пространственное расположение атомов в кристаллической решетке. Этот вид структуры исследуется с помощью рентгено- графического структурного анализа.

Строение металла

Все металлы имеют кристаллическое строение. Располагаясь тем или иным способом, атомы образуют элементарную ячейку пространственной кристаллической решетки. Тип ячейки зависит от химической природы и состояния металла. Кристаллическое состояние, прежде всего, характеризуется определенным, закономерным расположением атомов в пространстве. Это обусловливает то, что в кристалле каждый атом имеет одно и то же количество ближайших атомов -- соседей, расположенных на одинаковом от него расстоянии. В процессе кристаллизации положительно заряженные ионы, располагаясь последовательно в виде элементарных кристаллических решеток, образуют кристаллы в виде зерен или дендритов. Все металлы и сплавы имеют кристаллическое строение. Образующиеся кристаллы растут, кристаллизуются из жидкого расплава сначала свободно, не мешают один другому, потом они сталкиваются и рост кристаллов продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате первоначальная геометрически правильная форма кристаллов нарушается. После затвердевания зерна и дендриты имеют неправильную, геометрически искаженную форму.

Рисунок 1. Схема кристаллизации: а - в виде зерен; б - в виде дендритов.

Стремление атомов (ионов) металла расположиться, возможно, ближе друг к другу, плотнее, приводит к тому, что число встречающихся комбинаций взаимного расположения атомов металла в кристаллах невелико.

Существует ряд схем и способов описания вариантов взаимного расположения атомов в кристалле. Взаимное расположение атомов в одной из плоскостей показано на схеме размещения атомов (рисунок 2) .

Рисунок 2. Элементарная кристаллическая ячейка (простая кубическая).

Воображаемые линии, проведенные через центры атомов, образуют решетку, в узлах которой располагаются атомы (положительно заряженные ионы); это так называемая кристаллографическая плоскость. Многократное повторение кристаллографических плоскостей, расположенных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (ионов). Расстояния между центрами соседних атомов измеряются ангстремами (1 А= 1 * 10 -8 см) или в килоисках -- kX (1kX = 1,00202 А). Взаимное расположение атомов в пространстве и величину между атомных расстояний определяют рентгеноструктурным анализом. Расположение атомов в кристалле весьма удобно изображать в виде пространственных схем, в виде так называемых элементарных кристаллических ячеек. Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решетку. Простейшим типом кристаллической ячейки является кубическая решетка. В простой кубической решетке атомы расположены (упакованы) недостаточно плотно. Стремление атомов металла занять места, наиболее близкие друг к другу, приводит к образованию решеток других типов: кубической объемноцентрированной (рисунок 3, а), кубической гранецентрированной (рисунок 3, б) и гексагональной плотноупакованной (рисунок 3, в).

Рисунок 3. Элементарные кристаллические ячейки: а - кубическая объемноцентрированная; б - кубическая гранецентрированная; в - гексагональная плотноупакованная.

металл теплопроводность электромагнитный температурный

Кружки, отображающие атомы, располагаются в центре куба и по его вершинам (куб объемноцентрированный), или в центрах граней и по вершинам куба (куб гранецентрированный), или в виде шестигранника, внутрь которого наполовину вставлен также шестигранник, три атома верхней плоскости которого находятся внутри шестигранной призмы (гексагональная решетка).

Метод изображения кристаллической решетки, приведенный на рисунке 3, является условным (как в любой другой). Может быть, более правильно изображение атомов в кристаллической решетке в виде соприкасающихся шаров (левые схемы на рисунке 3). Однако такое изображение кристаллической решетки не всегда удобно, чем принятое (правые схемы на рисунке 3).

Размеры кристаллической решетки характеризуются параметрами, или периодами решетки. Кубическую решетку определяет один параметр -- длина ребра куба а (рисунок 3, а, б). Параметры имеют величины порядка атомных размеров и измеряются в ангстремах.

Так например, параметр решетки хрома, имеющего структуру объемноцентрированного куба, равен 2,878 А, а параметр решетки алюминия, имеющего структуру гранецентрированного куба, 4,041 А.

Параметр решетки -- чрезвычайно важная характеристика. Современные методы рентгеновского исследования позволяют измерить параметр с точностью до четвертого или даже пятого знака после запятой, т. е. одной десятитысячной -- одной стотысячной доли ангстрема.

Из рассмотрения схем кристаллических решеток (рисунок 3), если считать, что атомы являются как бы упругими, касающимися друг друга шарами, вытекает, что параметр решетки а и атомный диаметр d связаны простыми геометрическими соотношениями.

Для объемноцентрированного куба

Для гранецентрированного куба

Принимая для атома форму шара, можно подсчитать, что в кубической объемноцентрированной решетке атомы занимают 68% объема, а в кубической гранецентрированной (как и в гексагональной плотноупакованной) 74%, т.е. во втором случае атомы располагаются более плотно, более компактно.

Для металлов распространена гексагональная решетка (рисунок 3, в).

Если слои атомов касаются друг друга, т. е. три атома, изображенные внутри решетки (рисунок 3, в), касаются атомов, расположенных на верхней и нижней плоскостях, то имеем так называемую гексагональную плотноупакованную решетку.

Размеры гексагональной плотноупакованной решетки характеризуются постоянным значением с/а=1,633. При иных значениях с/а получается неплотлоупакованная гексагональная решетка.

Кубическая гранецентрированная и гексагональная решетки представляют самый плотный способ укладки шаров одного диаметра.

Некоторые металлы имеют тетрагональную решетку (рисунок 4); она характеризуется тем, что ребро с не равно ребру а. Отношение этих параметров характеризует так называемую степень тетрагональности. При с/а = 1 получается кубическая решетка. В зависимости от пространственного расположения атомов тетрагональная решетка (как и кубическая) может быть простой, объемноцентрированной и гранецентрированной.

Рисунок 4. Тетрагональная решетка

Существенное значение для свойств данного металла или сплава имеет число атомов, находящихся во взаимном контакте. Это определяется числом атомов, равноотстоящих на ближайшем расстоянии от любого атома.

Число атомов, находящихся на наиболее близком и равном расстоянии от данного атома, называется координационным числом. Так, например, атом в простой кубической решетке имеет шесть ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 6.

Центральный атом в объемноцентрированной решетке имеет восемь ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 8. Координационное число для гранецентрированной решетки равно 12. В случае гексагональной плотноупакованной решетки координационное число равно 12, а в случае с/а? 1,633 каждый атом имеет шесть атомов на одном расстоянии и шесть на другом (координационное число 6).

Для краткого обозначения кристаллической решетки с указанием в этом обозначении типа кристаллической решетки и координационного числа была принята одна из следующих систем (таблица 1).

Таблица 1

Каждый металл обладает определенной кристаллической решеткой.

Существенной характеристикой кристаллической структуры является число атомов, приходящихся на элементарную ячейку.

В о. ц. к. решетке атомы, находящиеся в вершине, принадлежат восьми элементарным ячейкам. Следовательно, каждый атом вносит в данную элементарную ячейку только одну восьмую часть своего объема. Центральный атом полностью принадлежит данной элементарной ячейке. Следовательно, на одну элементарную ячейку приходятся 1/8 * 8+1=2 атома.

В гранецентрированном кубе на одну элементарную ячейку приходятся четыре атома (1/8 ? 8 атом от числа расположенных в вершинах куба + 1/2 ? 6=3 атома из числа центрирующих грани).

Типично металлические элементы, расположенные в левой части таблицы Д. И. Менделеева, кристаллизуются в плотной упаковке, т. е. в простые кристаллические ячейки с большим координационным числом. Типично металлическими решетками являются, как указывалось, решетки о. ц. к., г. ц. к. и г. п. у. Действительно, почти все металлы, начиная от цинка, кадмия и ртути и левее имеют в большинстве случаев простые решетки.

Для неметаллических элементов характерно малое значение координационного числа (К4 и меньше). Неметаллы обладают меньшей плотностью и меньшим удельным весом, чем металлы.

Заключение

Металлы -- простые вещества, обладающие свободными, не связанными с определенными атомами электронами, которые способны перемещаться по всему объему тела. Эта особенность состояния металлического вещества определяет собой свойства металлов.

Атомы металлов легко отдают внешние (валентные) электроны, превращаясь при этом в положительно заряженные ноны. Отданные атомами свободные электроны непрерывно хаотически, т. е. беспорядочно, перемещаются по всему объему металла. Такие свободные электроны часто называют электронным газом. Положительно заряженные ионы при столкновении со свободными электронами на некоторое время могут превращаться в нейтральные атомы.

Таким образом, металлы состоят из упорядоченно расположенных в пространстве положительно заряженных ионов, перемещающихся среди них электронов и небольшого количества нейтральных атомов. Металлами являются алюминий, железо, медь, никель, хром и т.д.

Сплавы представляют собой системы, состоящие из двух или нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов. Например, сталь и чугун - сплавы железа с углеродом, кремнием, марганцем, фосфором и серой; бронза - сплав меди с оловом или другими элементами; латунь - сплав меди с цинком и другими элементами.

В промышленности широко применяют сплавы, получаемые сплавлением составляющих с последующей кристаллизацией из жидкого состояния, значительно меньше - сплавы, получаемые спеканием.

В процессе кристаллизации из расплавленного (жидкого) состояния металла или сплава положительно заряженные ионы и нейтральные атомы группируются в строго определенной последовательности, образуя кристаллические решетки - правильное упорядоченное расположение атомов в элементарной ячейке. Кристаллические решетки у металлов и сплавов могут быть различных типов: объемно-концентрированные кубические (о. ц. к.), гранецентрированные кубические (г. ц. к.), гексагональные плотноупакованные (г. п. у.). Объемно-концентрированную кубическую решетку образуют железо, медь, алюминий, свинец и др.; гексагональную плотноупакованную- цинк, магний, кобальт и др.

Для характеристики кристаллической решетки необходимо знать периоды решетки - расстояние а и с между центрами атомов или ионов, находящихся в узлах решетки. Период решетки измеряется в ангстремах (1А=10 -8 см).

В процессе кристаллизации положительно заряженные ионы, располагаясь последовательно в виде элементарных кристаллических решеток, образуют кристаллы в виде зерен или дендритов. Все металлы и сплавы имеют кристаллическое строение. Образующиеся кристаллы растут, кристаллизуются из жидкого расплава сначала свободно, не мешают один другому, потом они сталкиваются и рост кристаллов продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате первоначальная геометрически правильная форма кристаллов нарушается. После затвердевания зерна и дендриты имеют неправильную, геометрически искаженную форму.

При нагревании поглощаемое металлами тепло расходуется на колебательные движения атомов и вследствие этого на тепловое расширение металла. При плавлении объем металлов увеличивается на 3-4%. С повышением температуры колебательные движения атомов или ионов возрастают, кристаллические зерна распадаются и сплав, проходя через твердо-жидкое состояние, превращается в расплав.

Переход в жидкое состояние не приводит к полному уничтожению кристаллической структуры. В расплаве металлов и сплавов всегда находятся мельчайшие участки, в которых сохраняется первоначальное, наследственное строение металла, близкое к кристаллическому. Кроме того, всегда присутствуют тугоплавкие частицы (остатки футеровки печи, примеси других элементов), которые могут образовывать дополнительные центры кристаллизации и вызывать начало кристаллизации. На искусственном создании центров кристаллизации в расплаве с одновременным изменением его скорости охлаждения основано управление кристаллизации сплава с целью получения заданной структуры сплава в твердом состоянии.

Литература

1. Гуляев А.П. Металловедение.- 5-е изд., перераб. и доп. - М.: Издательство "металлургия", 1977.

2. Материаловедение для слесарей-сантехников, слесарей-монтажников, машинистов строительных машин: Учебник для сред. проф.-тех. училищ /Ю.Г.Виноградов, К.С.Орлов, Л.А.Попова. - М.: Высш. школа, 2-е изд., 1989.

3. Материаловедение. Лекция 5. З.О.

4. Мойзберг Р.К. Материаловедение, 1991.

5. Ханапетов М.В. Сварка и резка металлов. - 3-е изд., перераб. и доп. - М.: Стройиздат, 1988.

Вариант 1.

    В металлах тип связи:

    ковалентная полярная; 2) ионная; 3) металлическая; 4) ковалентная неполярная.

    Во внутреннем строении металлов имеются:

1) только катионы; 2) только анионы; 3) катионы и анионы; 4) катионы и нейтральные атомы.

    Жидкий металл при комнатной температуре – это:

1) железо; 2) ртуть; 3) золото; 4) литий.

    Золото алхимики считали символом:

    Неправильное суждение , о том, что все металлы:

1) обладают ковкостью; 2) обладают металлическим блеском; 3) обладают электропроводностью; 4) летучие вещества.

    Наиболее твёрдый металл:

1) натрий; 2) хром; 3) свинец; 4) литий.

    Металл, обладающий наибольшей плотностью:

1) железо; 2) медь; 3) золото; 4) титан.

    Лучше отражает свет:

1) свинец; 2) серебро; 3) цинк; 4) железо.

    Среди перечисленных веществ укажите те, которые являются металлами:

    кремний; 2) бериллий; 3) бор; 4) алюминий; 5) калий; 6) аргон; 7) сера; 8) олово.

Ответ дайте в виде последовательности цифр в порядке их возрастания.

Тест №4 Тема «Простые вещества – металлы»

Вариант 2.

    Металлы для завершения слоя:

1) отдают электроны; 2) принимают электроны; 3) отдают или принимают электроны; 4) у них слой завершённый.

2. Связь в металлах между катионами осуществляют:

1) свободные электроны; 2) анионы; 3) протоны; 4) нейтроны.

3. Самый пластичный из драгоценных металлов:

1) серебро; 2) платина; 3) золото; 4) ртуть.

    Медь алхимики считали символом:

1) Венеры; 2) Марса; 3) Солнца; 4) Сатурна.

5. Наиболее мягкий металл:

1) хром; 2) титан; 3) молибден; 4) свинец.

6. Наиболее тугоплавкий металл:

1) вольфрам; 2) ртуть; 3) золото; 4) титан.

7. Металл, обладающий наименьшей плотностью:

1) натрий; 2) олово; 3) свинец; 4) железо.

8. Обладает наибольшей электропроводностью:

1) железо; 2) золото; 3) алюминий; 4) серебро.

9. Расставьте перечисленные металлы в порядке увеличения плотности:

1) медь; 2) железо; 3) свинец; 4) алюминий; 5) золото.

Ответ дайте в виде последовательности цифр.

Ответы. Тема «Простые вещества – металлы»

1 вариант.

2 вариант.

убивать таких людей стало невозможно по тем или ... слой за слоем , «срезается» или ... завершённый ... вещества , для ... тест . И, тем ... завершения работы я не просто ... принимать или ... вариантом для ...
  • Грязь)? Книга начертанная! Ведь книга праведников, конечно, в иллийуне (возвышенном). А что тебе даст знать, что такое иллийун? Книга начертанная! (Таблица с Письменами)

    Документ

    ... или система образов проста , лаконична и закончена в своей красоте завершенности ... тем получить доступ к ним, и через них приобщиться к земной жизни для ... вариант универсального космизма. Но уже сейчас мы должны принимать ... электрон , за электроном - керн или ...

  • Давным-давно в волшебной стране Эквестрии

    Документ

    ... завершённости ... простых Минталок или любых других веществ , вызывающих зависимость. Бак, Рейдж, Дэш... Все из них ... отдаться воле Богини. Уже сейчас она принимает ... Тем не менее, для меня дело чести - дать вам этот вариант . Просто ... электронную ... завершения ...

  • Образовательный стандарт образовательная система «Школа 2100»

    Образовательный стандарт

    ... них (принимать ... металлов . Использование различных металлов ... кл. Завершенная предметная линия... завершённых ... и отдых в... электронном вариантах ). В них выставляются отметки (баллы или ... теме «Вещество и 1 Контрольный Значение воздуха для ... тест (выбери номер простого ...

  • Оглавление книги Следующая страница>>

    § 2. Строение металлов и сплавов и методы его изучения

    Кристаллическое строение металлов . Изучением внутреннего строения и свойств металлов и сплавов занимается наука, называемая металловедением.

    Все металлы и сплавы построены из атомов, у которых внешние электроны слабо связаны с ядром. Электроны заряжены отрицательно и если создать незначительную разность потенциалов, то электроны направятся к положительному полюсу, образуя электрический ток. Этим и объясняется электропроводность металлических веществ.

    Все металлы и сплавы в твердом состоянии имеют кристаллическое строение. В отличие от некристаллических (аморфных) тел, у металлов атомы (ионы) расположены в строго геометрическом порядке, образуя пространственную кристаллическую решетку. Взаимное расположение атомов в пространстве и расстояния между ними устанавливаются рентгеноструктурным анализом. Расстояние между узлами в кристаллической решетке называется параметром решетки и измеряется в ангстремах Å (10 -8 см). Параметры решетки различных металлов колеблются от 2,8 до 6 Å (рис. 23).

    Рис. 23. Элементарные кристаллические ячейки :

    а — кубическая объемноцентрированная; б — кубическая гранецентрированная; в —гексагональная

    Для наглядного представления о расположении атомов в кристалле используют пространственные схемы в виде элементарных кристаллических ячеек. Наиболее распространенными типами кристаллических решеток являются кубическая объемноцентрированная, кубическая гранецентрированная и гексагональная.

    В кубической объемноцентрированной решетке расположено девять атомов. Такую решетку имеют хром, вольфрам, молибден, ванадий и железо при температуре до 910° С.

    В кубической гранецентрированной решетке расположено 14 атомов. Такую решетку имеют: медь, свинец, алюминий, золото, никель и железо при температуре 910—1400° С.

    В гексагональной плотноупакованной решетке расположено 17 атомов. Такую решетку имеют: магний, цинк, кадмий и другие металлы.

    Взаимное расположение атомов в пространстве, количество атомов в решетке и междуатомные пространства характеризуют свойства металла (электропроводность, теплопроводность, плавкость, пластичность и т. д.).

    Расстояние между атомами в кристаллической решетке может быть различным по разным направлениям. Поэтому и свойства кристалла по разным направлениям не одинаковы. Такое явление называется анизотропией. Все металлы — тела кристаллические, поэтому они являются телами анизотропными. Тела, у которых свойства во всех направлениях одинаковые, называются изотропными.

    Кусок металла, состоящий из множества кристаллов, обладает в среднем свойствами, одинаковыми во всех направлениях, поэтому он называется квазиизотропным (мнимая изотропность).

    Анизотропность имеет большое практическое значение. Например, путем ковки, штамповки, прокатки в деталях получают правильную ориентацию кристаллов, в результате чего вдоль и поперек детали достигаются различные механические свойства. С помощью холодной прокатки добиваются высоких магнитных и электрических свойств в определенном направлении детали.

    В изготовлении машин и рабочих установок, наиболее применяемыми стали металлы и их сплавы.
    Металлы – это вещества, которые обладают высокой электропроводностью и теплопроводностью, блеском, ковкостью и другими свойствами, которые легко и не очень поддаются металлообработке .

    В промышленности все металлы и сплавы делят на две категории: цветные и черные . Так называемые черные металлы – это чистое железо и сплавы на основе его материала. К цветным – относятся остальные виды металлов. Для правильного выбора металла для изготовления конструкций механизмов с дальнейшим анализом ее использования, механических и других свойст, которые влияют на надежность и работоспособность машин – нужно знать внутреннее строение, механические, физико-химические и технологические свойства, а также каким методом проделывать обработку металла и нуждается ли материал в резке металла (если материал нужно обработать резкой, то лучше это сделать при помощи плазменной резки металла).

    В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Молекулы металлов (атомы, ионы) в пространстве располагаются в строго определенном порядке и между собой образуют кристаллическую решетку .
    Образуется кристаллическая решетка посредством обработки металла , т.е. перехода его состояния из жидкого в твердое. Такой процесс носит название – кристаллизация . Впервые эти процессы были изучены ученым из России - Д.К. Черновым.

    Процесс кристаллизации :
    Сам процесс состоит из двух частей. У металла, который находится в жидком состоянии, атомы непрерывно двигаются. Если понизить температуру, то скорость передвижения атомов уменьшается, они сближаются и группируются в кристаллы (поэтому для того, чтобы изменить форму и структуру изделия, его подвергают металлообработке при помощи нагревания) – это первая часть, при ней образуются центры кристаллизации.
    Затем идет рост вокруг центров кристаллизации – это уже вторая часть процесса. В самом начале рост кристаллов протекает свободно, но потом, рост одних – мешает росту другим, в результате формируется неправильная форма группы кристаллов, которые называются зёрнами. Размер полученных зёрен, значительно влияет на дальнейшую металлообработку изделий. Металл, состоящий из крупных зёрен - имеет низкую сопротивляемость к удару, если производится резка металла , то появляется трудность в получении низкой шероховатости на поверхности такого металла. Размеры зёрен зависят от условий кристаллизации и свойств самого металла.

    Способы изучения металлической структуры :
    Исследование структуры металлов и сплавов производится посредством макро и микро – анализов, а также и другими способами. При помощи макро-анализа изучается строение металла, которое можно увидеть невооруженным глазом или при помощи лупы. Эта структура определяется по макрошлифам или изломам. Макрошлиф – это образец металла, одна из сторон которого травлена кислотой и отшлифована.
    При микро-анализе изучается размеры и формы зёрен, их структурные составляющие, выявляют микродефекты и качество термической обработки металла . Этот анализ производится по микрошлифам при помощи микроскопа. Микрошлиф – это некий образец металла, который имеет плоскую отполированную поверхность, травленую слабым раствором кислоты.

    Свойства металлов :
    Металлические свойства подразделяются на физико-химические, технологические и механические. Под механическими свойствами понимается сопротивляемость металла к воздействию на него внешней силы. К механическим свойствам относятся вязкость , прочность , стойкость и другие.
    Прочность – это свойства металла в определенных условия не разрушаться, но воспринимать воздействие внешних сил. Это свойство является важным показателем при выборе метода обработки металла .
    Вязкость – это сопротивление материала при ударной нагрузке.
    Твердость – свойства материала к сопротивлению внедрения в него другого материала.

    К основными технологическими свойствами относятся - ковкость , свариваемость , свойства плавления , обрабатываемость резанием и другие.
    Ковкость – это свойства материала подвергаться металлообработке ковкой и другим методам обработки давлением.
    Свариваемость – свойства материала создавать прочные сварные соединения.
    Свойства плавления – свойства материала в расплавленном виде заполнять литейные формы и создавать плотные отливки с нужной конфигурацией.
    Обрабатываемость резанием – свойства материала подвергаться резке металла для того, чтобы придать детали нужную форму, размер и шероховатость поверхности. Лучшим методом резки металлов является плазменная резка металла . После этого процесса металла практически не нуждается в дальнейшей металлообработке .
    Для того, чтобы получать качественное изделие с хорошим внешним и внутренним строением, нужно хорошо разбираться в строении металлов, ведь только так можно получить отличный результат.

    Структура металлов и сплавов


    К атегория:

    Автомобильные материалы и шины



    Структура металлов и сплавов

    1. Развитие металлографии

    Металлография, или металловедение,- наука, занимающаяся изучением свойств, состава и структуры металлов и их сплавов. Металловедение кзк наука создана русскими учеными-металлур-гами. Выдающийся русский ученый-металлург Павел Петрович Аносов первый заложил основы металловедения. Работая на Златоустовском оружейном заводе на Урале, он впервые в мире в 1831 г. применил микроскоп для исследования строения стали на полированных травленых шлифах. П. П. Аносов положил начало современному процессу производства стали, называемому мартеновским; он осуществил метод передела чугуна в сталь (в 1873 г.) без добавки железа, опередив этим более чем на 30 лет братьев Мартен.

    П. П. Аносов проделал большую научную работу по изучению влияния углерода на свойства стали. Его научные работы оказали большое влияние на развитие производства качественных сталей и на улучшение методов их термической обработки. Дальнейшую работу по изучению свойств металлов и металлических сплавов в зависимости от изменения их состава и строения продолжал гениальный русский ученый Дмитрий Константинович Чернов. Работая инженером на Обуховском сталелитейном заводе в Петербурге, он сделал открытие, которое имело исключительно важное значение для дальнейшего развития металловедения. Д. К. Чернов в результате многочисленных наблюдений над поведением стальных поковок в процессе тепловой обработки установил, что при определенных температурах в стали, находящейся в твердом состоянии, происходит перестройка ее частиц, благодаря чему изменяется структура стали и ее свойства.



    Открытия, сделанные Д. К. Черновым, были опубликованы в 1868 г., в связи с чем он получил всемирную известность и заслуженно считается основоположником металлографии. Благодаря его открытиям стала возможной правильная, научно обоснованная термическая обработка металлов и металлических сплавов.

    Последователи и ученики Д. К. Чернова - Н. С. Курнаков, А. А. Байков и др.- в дальнейшем способствовали своими научными работами и исследованиями еще большему развитию отечественного металловедения.

    2. Кристаллическая структура металлов

    Существуют тела аморфные и кристаллические. Структура аморфных тел состоит из хаотически расположенных атомов. К таким телам относятся, например, стекло, янтарь, смолы и т. п. Кристаллические тела отличаются от аморфных тем, что атомы в них располагаются в геометрически правильном порядке. Металлы и металлические сплавы относятся к типичным кристаллическим телам. Атомы, располагаясь в металлах в строго определенном геометрическом порядке, образуют кристаллическую решетку (рис. 11). В зависимости от расположения атомов образуются различные виды кристаллических решеток.

    В металлах чаще всего встречаются кристаллические решетки в виде центрированного куба, гранецентрированного куба и гексагональной призмы.

    Такие, например, металлы как хром, ванадий, вольфрам, молибден и ряд других, имеют кристаллическую решетку в виде центрированного куоа (рис. 12, а), в которой восемь атомов располагаются в углах куба и один - в центре куба.

    Алюминий, медь, свинец, никель, серебро и др. имеют кристаллическую решетку - гранецентрированную, т. е. в виде куба с центрированными гранями (рис. 12,6). В такой решетке в каждом углу куба находится по одному атому и по одному атому в центре каждой грани. Всего, следовательно, 14 атомов.

    Кристаллическую решетку в зиде гексагональной призмы (рис. 12, е) имеют такие металлы, как, например, цинк, титан, марганец. Расположение атомов в кристаллической решетке типа гексагональной призмы следующее: в каждом углу призмы находится по одному атому, в центре верхнего основания один атом, в центре нижнего основания один атом и три атома в среднем сечении.

    Рис. 11. Кристаллическая решетка

    Рис. 12. Виды кристаллических решеток:
    а - куб центрированный; б - куб гранецентрированный; в - гексагональная призма

    Расстояния между атомами в кристаллической решетке чрезвычайно малы и измеряются специальной единицей длины, которая носит название ангстрема (по имени ученого). Один ангстрем равен одной стомиллионной Юле сантиметра.

    В расплавленном жидком металле атомы находятся в движении.‘Движение их носит хаотический характер, но по мере того, как температура металла понижается и приближается к критической, т. е. к температуре затвердевания, в нем образуются так называемые центры кристаллизации, или зародыши кристаллизации. Центры кристаллизации представляют собой чрезвычайно мелкие группы атомов, которые группируются в геометрически правильном порядке.

    Образующиеся зародыши кристаллизации очень неустойчивы, и многие из них снова растворяются. Практическими наблюдениями установлено, что зародыши кристаллизации приобретают устойчивость и начинают расти тогда, когда жидкий металл переохладится до некоторой температуры. Кривая охлаждения чистого металла дает наглядное представление о том, как протекает процесс кристаллизации.

    Рис. 13. Кривая охлаждения чистого металла

    В переохлажденном металле (рис. 13, а) процесс кристаллизации начинает протекать быстрее. После начала интенсивной кристаллизации температура переохлажденного металла поднимается до температуры его затвердевания (б) за счет выделения скрытой теплоты кристаллизации.

    Рис. 14. Схема образования зерен

    В течение всего процесса кристаллизации температура металла остается постоянной (б, в). После того как металл перейдет из жидкого состояния в твердое, начинается понижение его температуры до температуры окружающей среды (г). В процессе кристаллизации происходит рост зародышей за счет атомов из окружающей их жидкости, которые располагаются в кристаллической решетке в строго определенном порядке (рис. 14, а, б). Вначале рост зародышей кристаллизации протекает свободно, и они имеют правильную внешнюю геометрическую форму. Но так как одновременно образуется много зародышей, то наступает такой момент, когда они начинают встречаться друг с другом (рис. 14, в, г, д). После такого столкновения рост их становится возможным только в тех направлениях, где нет помех. Это приводит к тому, что внешняя геометрическая форма кристаллов металла становится неправильной, вследствие чего они обычно называются зернами металла (рис. 14, е).

    3. Изменение структуры в твердых металлах (явление аллотропии)

    Структура некоторых металлов, находящихся в твердом состоянии, может при известной температуре испытывать превращения, которые представляют собой перегруппировку атомов и переход из одного вида кристаллической решетки в другой. Такое явление носит название аллотропии металлов. Различные кристаллические формы, в которые кристаллизуется один и тот же твердый металл при определенных температурах, называются аллотропическими модификациями. Аллотропические модификации обозначаются греческими буквами. Переход из одной модификации в другую происходит при определенной, постоянной температуре и сопровождается поглощением тепла (при нагреве) или выделением тепла (при охлаждении) и образованием новой кристаллической решетки.

    Рис. 15. Кривая охлаждения чистого железа

    Чистое железо существует в нескольких модификациях. На кривой охлаждения чистого железа (рис. 15) видно, при каких температурах происходят аллотропические превращения железа. До температуры 910° железо имеет кристаллическую решетку в виде центрированного куба и называется альфа-железо a-Fe. .причем до 770° a-Fe магнитно, а выше 770° немагнитно. При температуре 910° кристаллическая решетка a-Fe меняется и переходит в гранецентрированную; эта модификация называется гамма-железо y-Fe и устойчива до температуры 1390°, при которой вновь превращается в решетку центрированного куба. Новая модификация называется дельта-железо 8-Fe. Аллотропические превращения имеют очень важное значение, так как металлы, испытывающие такие превращения, могут подвергаться термической обработке. Аллотропическим превращениям подвержены, кроме железа, и некоторые другие металлы, как, например, титан, марганец, кобальт, цирконий, олово.

    4. Строение сплавов

    Сплавом называется сложное вещество, полученное сплавлением двух или нескольких элементов. Элементы, составляющие сплав, называются компонентами сплава. В жидком состоянии сплав представляет раствор, в котором атомы одного компонента равномерно распределяются между атомами других компонентов, благодаря чему жидкий раствор обладает одинаковыми свойствами в любой своей части, как бы она ни была мала. Такие вещества называются однородными. Свойства любого жидкого раствора отличаются от свойств его компонентов, но каждый компонент оказывает влияние на характер свойств раствора. При тщательном исследовании жидких растворов оказывается, что физические, электрические и другие свойства этих растворов резко отличаются от свойств их компонентов и могут изменяться в зависимости от процентного содержания компонентов, т. е. от концентрации‘раствора.

    Концентрацией раствора называется отношение веса растворимого вещества к весу всего раствора. Концентрация выражается обычно в процентах. При переходе сплава из жидкого состояния в твердое могут получаться различные виды взаимодействия компонентов. Основными видами взаимодействия компонентов являются: механическая смесь, химическое соединение и твердый раствор.

    Механическая смесь представляет такой вид взаимодействия компонентов, при котором в процессе кристаллизации компоненты сплава не вступают в химическую реакцию и не растворяются один в другом, а сохраняют свои кристаллические решетки. Следовательно, структура сплава, являющегося механической смесью двух каких-либо компонентов, например, свинца и сурьмы, будет состоять из чрезвычайно мелких кристаллов свинца и кристаллов сурьмы.

    В случае химического соединения взаимодействие компонентов сплава характеризуется образованием совершенно новой кристаллической решетки, не похожей на кристаллические решетки компонентов; при этом соотношение компонентов всегда будет строго определенным.

    Твердый раствор отличается от механической смеси и химического соединения тем, что в нем сохраняется кристаллическая решетка металла-растворителя, в которой размещаются атомы всех компонентов сплава. Металл, кристаллическая решетка которого сохраняется после образования твердого раствора, называется растворителем. Твердые растворы могут быть двух видов: твердый раствор внедрения и твердый раствор замещения. В твердом растворе внедрения атомы растворенного вещества располагаются между атомами растворителя (рис. 16, а). В твердом растворе замещения атомы растворенного вещества частично замещают собой атомы растворителя в его кристаллической решетке (рис. 16,6).

    Рис. 16. Решетка твердого раствора:
    а - внедрения; б - замещения

    5. Диаграмма состояния сплавов (свинец - сурьма) и ее построение

    Для изучения сплавов обычно пользуются диаграммами состояния сплавов. Диаграммы состояния сплавов заменяют собой все записи и кривые охлаждения сплава, полученные в результате Многочисленных наблюдений. Такая диаграмма дает возможность видеть все изменения строения сплава и его свойств, происходящие в зависимости от изменения концентрации и температуры. Любая точка диаграммы дает характеристику сплаза определенной концентрации и структуры. По диаграмме состояния сплавов можно определить температуру плавления и температуру затвердевания данного сплава при любой концентрации. Знание этих фактов способствует правильному выбору температур нагрева и охлаждения при термической и химико-термической обработках различных сплавов.

    Для того чтобы уяснить, как строится диаграмма состояния сплавов, рассмотрим построение такой диаграммы для сплавов свинца и сурьмы. Возьмем чистые металлы свинец и сурьму и несколько их сплавов с содержанием сурьмы 5%, 10%, 13%, 20%, 40% и 80%.

    Рис. 17. Кривые охлаждения свинца, сурьмы и различных сплавов свинца с сурьмой

    Чтобы определить критические точки взятых металлов и их сплавов, нагреем поочередно каждый металл и сплав до полного расплавления и с помощью термопары или пирометра внимательно проследим за процессом их охлаждения и построим кривые охлаждения (рис. 17). В процессе охлаждения расплавленного чистого свинца будут происходить следующие явления.

    При температурах, лежащих выше 327°, свинец находится в жидком состоянии (рис. 17, а); при температуре 327° наблюдается процесс кристаллизации свинца с задержкой падения температуры до полного завершения кристаллизации; после окончания кристаллизации происходит дальнейшее охлаждение твердого свинца до температуры окружающей среды.

    Аналогичные явления наблюдаются и в процессе охлаждения расплавленной чистой сурьмы (рис. 17, б), с той лишь разницей, что кристаллизация сурьмы начинается при температуре 630°.

    Сплав, состоящий из 95% свинца и 5% сурьмы (рис. 17,в), имеет кривую охлаждения с двумя критическими точками, поэтому он затвердевает в интервале температур 296-246°. При температуре 296° из жидкого сплава начинают выделяться первые кристаллы чистого свинца. Кривая в этой точке имеет перегиб. По мере дальнейшего понижения температуры количество кристаллов свинца будет все более увеличиваться, а остающаяся часть жидкого сплава будет обогащаться сурьмой. Такое явление продолжается до тех пор, пока концентрация жидкого сплава не достигнет 13% сурьмы и 87% свинца; при такой концентрации весь сплав, оставшийся еще жидким, затвердеет при температуре 246°. Сплав, состоящий из 30% свинца и 10% сурьмы (рис. 17, г), затвердеет также в интервале температур 260-246°. При температуре 260° начинается выделение из жидкого сплава кристаллов свинца. При достижении концентрации жидкого сплава до 13% сурьмы и 87% свинца происходит затвердевание сплава при температуре 246° (рис. 17, д). Следовательно, при охлаждении вышеприведенных сплавов, прежде чем будет достигнута критическая температура 246°, весь лишний, избыточный сверх 87% свинец выделяется из жидкого сплава в виде кристаллов. По достижении состава 87% свинца и 13% сурьмы сплав переходит в твердое состояние при температуре 246°. Структура затвердевшего сплава такой концентрации состоит из правильно чередующихся между собой частиц свинца и сурьмы. Такая механическая смесь называется эвтектической. Все сплавы свинца с сурьмой, содержащие сурьмы меньше, чем 13%, будут всегда иметь избыток свинца и при охлаждении стремятся выделить этот избыток в виде твердых кристаллов свинца, чтобы при температуре 246° образовать эвтектику. Тогда, очевидно, в твердом состоянии такие сплавы будут иметь структуру свинец + эвтектика. Сплав, состоящий из 87% свинца и 13% сурьмы, имеет кривую охлаждения (рис. 17, д) с одной критической точкой. Этот сплав находится в жидком состоянии при температурах, лежащих выше 246°. При температуре 246° сплав полностью переходит в твердое состояние.

    Такая структура твердого сплава представляет собой чистую эвтектику. Сплав, состоящий из 80% свинца и 20% сурьмы (рис. 17, е), при температурах выше 280° находится в жидком состоянии. При охлаждении сплава до температуры 280° из него начинают выделяться кристаллы твердой сурьмы, причем этот процесс будет продолжаться до тех пор, пока оставшийся жидкий сплав не примет эвтектического состава. При температуре 246° весь сплав затвердевает. Структура затвердевшего сплава будет состоять из кристаллов сурьмы и эвтектики. Сплав, состоящий из 60о/0 свинца и 40о/0 сурьмы (рис. 17, ж), выше температуры 395° Находится в жидком состоянии. При температуре 395° начинается процесс кристаллизации с выделением из жидкого раствора кристаллов избыточной сурьмы. По достижении эвтектического состава- (87о/0 свинца и 13% сурьмы) при температуре 246° весь сплав переходит в твердое состояние, образуя структуру, состоящую из кристаллов сурьмы и эвтектики.

    Сплав, состоящий из 20% свинца и 80% сурьмы (рис. 17, з), находится в жидком состоянии выше температуры 570°. При температуре 570° начинается процесс выделения из жидкого сплава кристаллов избыточной сурьмы. По достижении эвтектического состава при температуре 246° весь сплав переходит в твердое состояние. Структура сплава состоит из кристаллов сурьмы и эвтектики. Приведенные наблюдения показывают, что все сплавы свинца с сурьмой, в которых содержание свинца меньше 87о/0, содержат избыток сурьмы и при охлаждении будут стремиться выделить этот избыток в процессе кристаллизации в виде твердых кристаллов сурьмы, чтобы при температуре 246° образовать эвтектику. Чем больше будет сурьмы в сплаве, тем при более высокой температуре начнет выделяться из него при охлаждении избыточная (против 13<>/0) сурьма. Сплавы свинца с сурьмой при наличии в них избыточной сурьмы образуют в твердом состоянии структуру, состоящую из кристаллов сурьмы и эвтектики.

    Рис. 18. Диаграмма состояния сплавов системы свинец-сурьма

    Кривые охлаждения сплавов свинца и сурьмы с различным процентным содержанием Компонентов можно объединить в одну диаграмму состояния сплавов свинца с сурьмой. Для этого на горизонтальной оси (рис. 18) отложим содержание свинца и сурьмы в испытанных сплавах. Через точки, соответствующие 100% сурьмы и 100% свинца, проведем вертикальные прямые линии, на которых отложим температуры от 0 до 700°. Через точки, отвечающие составам испытанных сплавов, проведем пунктиром вертикальные линии. После этого переносим с кривых охлаждения критические точки на вертикальные линии диаграммы. Критическую точку чистого свинца (327°) обозначим буквой А, а критическую точку чистой сурьмы (630°) буквой С. Как известно из предыдущих наблюдений, каждый сплав имеет две критические точки, кроме эвтектического сплава. Критическую температуру эвтектического сплава обозначим буквой В. Соединим точки А и С плавными кривыми с точкой В так, чтобы кривые проходили через все верхние критические точки. Через все нижние критические точки проведем прямую линию, которая пройдет и через точку В, и обозначим ее левый конец буквой D, а правый конец буквой Е. Верхние критические точки являются точками начала затвердевания сплавов, а нижние критические точки - точками конца затвердевания сплавов. Линия ABC диаграммы называется линией ликвидуса (от латинского слова жидкий). Выше линии ABC все сплавы свинца и сурьмы находятся в жидком состоянии. Линия DBE называется линией солидуса (от латинского слова «твердый»). Ниже линии DBE все сплавы свинца с сурьмой находятся в твердом состоянии, причем ниже линии DB они будут состоять из кристаллов свинца и эвтектики и называются доэвтектическими, ниже точки В - из чистой эвтектики (так называемые эвтектические) и ниже линии BE - из кристаллов сурьмы и эвтектики (заэвтектические).

    6. Структурные составляющие железоуглеродистых сплавов

    Существуют различные структурные составляющие железоуглеродистых сплавов. Они имеют следующие названия: феррит, цементит, аустенит.

    Ферритом называется химически чистое железо, а также твердый раствор углерода в железе. Растворимость углерода в железе чрезвычайно мала и обычно составляет 0,006-0,04%. Феррит устойчив до температуры 910°. Он обладает небольшой твердостью и малой прочностью. Твердость феррита зависит от размера зерна; пластичность феррита высокая.

    Цементитом называется химическое соединение железа с углеродом. Цементит содержит 6,67% углерода (по весу) и представляет собой очень твердое и хрупкое кристаллическое вещество, которое при нагревании до высоких температур распадается на феррит и свободный углерод (углерод отжига). В белом чугуне содержится большое количество цементита. Цементит оказывает значительное влияние на механические свойства стали.

    Механическая смесь феррита и цементита образует структуру стали, называемую перлитом. Перлит бывает двух видов: пластинчатый, или полосчатый, и зернистый. Пластинчатый перлит имеет вид перемежающихся ‘очень мелких пластинок феррита и цементита. Путем нагрева до определенных температур можно изменить строение пластинчатого перлита и получить так назы-ваёмый зернистый перлит, в котором цементит находится в виде круглых зерен, расположенных среди феррита.

    Зернистый перлит обладает лучшими механическими свойствами, чем пластинчатый. Перлит по своим механическим свойствам занимает промежуточное положение между ферритом и цементитом. Сталь с содержанием углерода 0,83% имеет чистую перлитную структуру.

    Аустенит представляет собой твердый раствор внедрения углерода в железе. Растворимость углерода в у-железе может достигать 1,7%. В обыкновенной углеродистой стали аустенит устойчив до температуры 723°. Ниже 723° он распадается на феррит и цементит. При температурах, лежащих ниже 723°, аустенит может сохраняться только в высоколегированных марганцовистых, хромоникелевых или никелевых сталях.

    Эвтектическая смесь аустенита и цементита образует структуру стали, называемую ледебуритом. Ледебурит образуется при затвердевании железоуглеродистого сплава с содержанием углерода 4,3% при температуре 1130°. Ледебурит остается устойчивым до температуры 723°. Ниже этой температуры ледебурит изменяет свою структуру, так как входящий в его состав аустенит распадается на перлит, вследствие чего ледебурит при температурах ниже 723° будет состоять из перлита и цементита.

    7. Диаграмма состояния железоуглеродистых сплавов

    Стали и чугуны представляют собой сложные сплавы, содержащие, кроме железа и углерода, другие элементы - кремний, марганец, фосфор и серу, а также цветные металлы (в легированных сталях и чугунах). Главнейшей составной частью, определяющей характер и свойства железоуглеродистого сплава, является углерод. Структура и свойства стали и чугуна изменяются лишь при условии нагрева их до критических температур, зависящих от содержания углерода в этих сплавах. Критические температуры железоуглеродистых сплавов с разным содержанием углерода могут быть нанесены на специальную диаграмму, называемую диаграммой состояния сплавов системы железо - углерод.

    Такая диаграмма (рис. 19) позволяет определить для каждого сплава стали и чугуна температуру его плавления, все превращения, испытываемые сплавом при охлаждении и нагревании, и структуру сплава при любой температуре. По горизонтальной оси диаграммы откладывается содержание углерода в процентах, а по вертикальной оси - температура. Каждая точка на диаграмме представляет собой определенный сплав при определенной температуре. Выше линии ACD все сплавы находятся в жидком состоянии. Линия АCD есть линия ликвидуса.

    Чистое железо плавится и затвердевает в одной точке при температуре 1535°. Все остальные сплавы железа с углеродом плавятся и затвердевают в некотором промежутке температур, постепенно изменяющемся. Сплавы, содержащие от 0 до 4,39% углерода, начинают затвердевать по линии АС, выделяя твердые кристаллы аустенита. Сплавы, содержащие более 4,3% углерода, начинают затвердевать по линии CD, выделяя твердые кристаллы цементита Fe3C. Сплав, содержащий 4,3% углерода, затвердевает полностью в точке С, выделяя одновременно кристаллы аустенита и цементита, в результате чего образуется эвтектика, называемая ледебуритом. Линия AECF есть линия солидуса. Ниже этой линии все сплавы находятся в твердом состоянии. Область диаграммы, ограниченная линиями АС, СЕ, ЕА, представляет сплавы, состоящие из твердых кристаллов аустенита и жидкого сплава; область диаграммы, ограниченная линиями DC. CF, FD, включает сплавы, состоящие из твердых кристаллов цементита и жидкого сплава.

    Рис. 19. Диаграмма состояния системы железо - углерод

    Сплавы, находящиеся в области диаграммы, ограниченной линиями АЕ, ES, SG, состоят из аустенита. По линии ES начинает выделяться из аустенита цементит. Ниже линии PSK весь оставшийся аустенит распадается в точке 5 на феррит и цементит, образуя механическую смесь, называемую перлитом, причем в точке 5 сплав содержит углерода 0,83°/о. Такой сплав называется эвтектоидным. Линия GPQ показывает предел насыщения а-железа углеродом.

    8. Изменение структуры стали

    При нагревании стали выше критической точки Aci (рис, 20) (температура, при которой перлит превращается в аустенит) в структуре стали, как известно, начинают происходить превращения. После окончания превращения дальнейшее нагревание или выдержка ведут к росту аустенитного зерна. Рост зерна происходит самопроизвольно, причем скорость этого процесса увеличивается с повышением температуры.

    Рост аустенитного зерна протекает по-разному и зависит от склонности зерна к росту. В зависимости от этого различают стали наследственно крупнозернистые и наследственно мелкозернистые. Под наследственностью понимают склонность зерна к росту. Наследственно крупнозернистые стали обладают повышенной склонностью аустенитного зерна к росту, а наследственно мелкозернистые малой склонностью к росту.

    Изменение размеров зерна при нагревании указанных сталей видно из рис. 20. При нагревании стали выше критической точки Асх размер зерна стали резко уменьшается. При дальнейшем нагревании аустенитное зерно в наследственно мелкозернистых сталях не растет до температур порядка 950--1000°, после чего начинается быстрый рост зерна.

    В наследственно крупнозернистых сталях зерно начинает расти сразу после перехода через критическую точку Ас\. Размер аустенитного зерна имеет большое значение для получения окончательных результатов при термической обработке сталей. Превращение перлита ib аустенит сопровождается измельчением зерна. Образующееся при этом превращении зерно очень мелко. При обратном превращении аустенитного зерна в перлитное изменений в его размере почти не происходит (рис. 21). Следовательно, размер перлитного зерна зависит главным образом от размера аустенигного зерна. А так как аустенитное зерно растет только при нагревании, то, нагревая сталь до определенных температур, можно получить окончательно требуемый размер зерна стали. Размер действительного зерна стали, т. е. зерна, полученного в результате той или иной термической обработки, оказывает большое влияние на механические свойства стали.

    Рис. 20. Схема роста зерна в наследственно-мелкозернистой и в наследственно-крупнозернистой стали

    Крупнозернистая сталь хорошо прокаливается и обрабатывается режущим инструментом, но в то же время она более склонна к закалочным деформациям, к образованию в ней трещин. Мелкозернистые стали обладают большей ударной вязкостью в сравнении с крупнозернистыми сталями, но меньшей прокаливае-мостью. Для изготовления изделий, которым требуется вязкая сердцевина при твердой поверхности, применяется мелкозернистая сталь.

    При медленном охлаждении нагретой стали до аус-тенитного состояния аусте-нит превращается в перлит, феррит и цементит. При больших скоростях охлаждения - от 40 до 200° в секунду и более - в результате распада аустенита получаются структуры стали: сорбит, троостит и мартенсит.

    Сорбит бывает двух видов: сорбит закалки и сорбит отпуска. Сорбит закалки состоит из чередующихся пластинок феррита и цементита, но пластинки цементита в нем значительно тоньше, чем в перлите. Сорбит тверже перлита, но обладает меньшей вязкостью. Сорбит отпуска получается в результате распада мартенсита в стали при отпуске ее в интервале температур 500-600°. В сорбите отпуска частицы цементита имеют шарообразную форму. Троостит, так же как и сорбит, различается двух видов: троостит закалки и ‘троостит отпуска.. Троостит представляет механическую смесь пластинок феррита и цементита, но более тонких, чем в сорбите. Троостит обладает большей твердостью по сравнению с сорбитом, но меньшей вязкостью. Троостит отпуска является продуктом распада мартенсита при отпуске его в интервале температур 350-450°.
    Мартенсит представляет собой твердый раствор внедрения углерода. Кристаллы мартенсита имеют иглообразную форму. Он обладает высокой твердостью и хорошо сопротивляется износу; пластичность и вязкость его низкие.

    Рис. 21. Изменение размера зерна в процессе перекристаллизации

    К атегория: - Автомобильные материалы и шины

    ← Вернуться

    ×
    Вступай в сообщество «rmgvozdi.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «rmgvozdi.ru»