Производство аммиачной селитры. Технологическая схема производства NH4NO3 и ее описание Как делают селитру на заводе

Подписаться
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:

Аммиачная селитра, или нитрат аммония, NH 4 NO 3 - кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы азота легко усваиваются растениями. Гранулированную аммиачную селитру применяют в больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ.

Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способностью поглощать влагу из воздуха), что является причиной того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений - сыпучий материал превращается в твердую монолитную массу.

Принципиальная схема производства нитрата аммония

Для получения практически неслеживающейся аммиачной селитры применяют ряд технологических приемов. Эффективным средством уменьшения скорости поглощения влаги гигроскопичными солями является их гранулирование. Суммарная поверхность однородных гранул меньше поверхности такого же количества мелкокристаллической соли, поэтому гранулированные удобрения медленнее поглощают влагу из

В качестве аналогично действующих добавок применяют также фосфаты аммония, хлорид калия, нитрат магния. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

NH 3 +HNO 3 = NH 4 NO 3 ; ΔН = -144.9кДж

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов.

Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод. На рис. 8.8 приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе до 70 - 80°С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалась 0,3-0,5% Р 2 О 5 и 0,05-0,2% суль- фата аммония. В агрегате установлены два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно нагретый в подогревателе 2 паровым конденсатом до 120- 130°С. Количества подаваемых азотной кислоты и аммиака регули- руют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.

В нижней части аппарата происходит реакция нейтрализации при температуре 155-170°С; при этом получается концентрированный раствор, содержащий 91-92% NH 4 NO 3 . В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров азотной кислоты. Часть теплоты сокового пара используется на подогрев азотной кислоты. Затем соковый пар направляют на очистку и выбрасывают в атмосферу.

Рис.8.8.Схема агрегата аммиачной селитры АС-72:

1 – подогреватель кислоты; 2 – подогреватель аммиака; 3 –аппараты ИТН; 4 – донейтрализатор; 5 –выпарной аппарат; 6 – напорный бак; 7,8 – грануляторы; 9,23 – вентиляторы; 10 – промывной скруббер; 11 – барабан; 12,14 – транспортеры; 13 –элеватор; 15 – аппарат кипящего слоя; 16 –грануляционная башня; 17 – сборник; 18, 20 – насосы; 19 – бак для плава; 21 –фильтр для плава; 22 – подогреватель воздуха.

Кислый раствор аммиачной селитры направляют в донейтрализатор 4; куда поступает аммиак, необходимый для взаимодействия с оставшейся азотной кислотой. Затем раствор подают в выпарной аппарат 5. Полученный плав, содержащий 99,7-99,8% селитры, при 175°С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16.

В верхней части башни расположены грануляторы 7 и 8, в нижнюю часть которых подают воздух, охлаждающий падающие сверху капли селитры. Во время падения капель селитры с высоты 50-55 м при обтекании их потоком воздуха образуются гранулы удобрения. Температура гранул на выходе из башни равна 90-110°С; горячие гранулы охлаждают в аппарате кипящего слоя 15. Это прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подают воздух; при этом создается псевдоожиженный слой гранул селитры, поступающих по транспортеру из грануляционной башни. Воздух после охлаждения попадает в грануляционную башню. Гранулы аммиачной селитры транспортером 14 подают на обработку поверхностно-активными веществами во вращающийся барабан. Затем готовое удобрение транспортером 12 направляют на упаковку.

Воздух, выходящий из грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержат непрореагировавший аммиак и азотную кислоту, а также частицы унесенной аммиачной селитры.

Для очистки этих потоков в верхней части грануляционной башни расположены шесть параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20-30%-ным раствором аммиачной селитры, которая подается насосом 18 из сборника 17. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к раствору селитры, и, следовательно, используется для выработкой продукции. Очищенный воздух отсасывается из грануляционной башни вентилятором 9 и выбрасывается в атмосферу.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Производство аммиачной селитры
  • 2. Исходное сырьё
  • 3. Синтез аммиака
  • 4. Характеристика целевого продукта
  • 5. Физико-химическое обоснование основных процессов производства целевого продукта и экологической безопасности производства

Введение

Важнейшим видом минеральных удобрений являются азотные: аммиачная селитра, карбамид, сульфат аммония, водные растворы аммиака и др. Азоту принадлежит исключительно важная роль в жизнедеятельности растений: он входит в состав хлорофилла, являющегося акцептором солнечной энергии, и белка, необходимого для построения живой клетки. Растения могут потреблять только связанный азот - в форме нитратов, солей аммония или амидов. Сравнительно небольшие количества связанного азота образуются из атмосферного за счет деятельности почвенных микроорганизмов. Однако современное интенсивное земледелие уже не может существовать без дополнительного внесения в почву азотных удобрений, полученных в результате промышленного связывания атмосферного азота.

Азотные удобрения отличаются друг от друга по содержанию в них азота, по форме соединений азота (нитратные, аммонийные, амидные), фазовому состоянию (твердые и жидкие), различают также физиологически кислые и физиологически щелочные удобрения.

1. Производство аммиачной селитры

Аммиачная селитра, или нитрат аммония, NН 4 NО 3 - кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы азота легко усваиваются растениями. Гранулированную аммиачную селитру применяют в больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ.

Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способностью поглощать влагу из воздуха). Это является причиной того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений- сыпучий материал превращается в твердую монолитную массу.

Аммиачную селитру выпускают трех видов:

А и В - используют в промышленности; применяют во взрывчатых смесях (аммонитах, аммониалах)

В - эффективное и наиболее распространенное азотное удобрение, содержащее около 33-34% азота; обладает физиологической кислотностью.

2. Исходное сырьё

Исходным сырьем в производстве аммиачной селитры является аммиак и азотная кислота.

Азотная кислота . Чистая азотная кислота HNO-бесцветная жидкость плотностью 1,51 г/смі при - 42 °С застывающая в прозрачную кристаллическую массу. На воздухе она, подобно концентрированной соляной кислоте, "дымит", так как пары ее образуют с "влагой воздуха мелкие капельки тумана. Азотная кислота не отличается прочностью, Уже под влиянием света она постепенно разлагается:

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот; в разбавленных растворах она полностью распадается на ионы Н и- NO.Азотная кислота - одно из важнейших соединений азота: в больших количествах она расходуется в производстве, азотных удобрений, взрывчатых веществ и органических красителей, служит окислителем во многих химических процессах, используется в производстве серной кислоты по нитрозному способу, применяется для изготовления целлюлозных лаков, кинопленки.

Промышленное получение азотной кислоты . Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При" описании свойств аммиака было указано, что он горит в кислороде, причём продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов - окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение

Образовавшийся легко переходит в, который с водой в присутствии кислорода воздуха дает азотную кислоту.

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.

Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концентрируют,

Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45%, а концентрированная-98 и 97%, Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную - в цистернах из кислотоупорной стали.

3. Синтез аммиака

аммиак азотный селитра сырье

Аммиак - ключевой продукт различных азотсодержащих веществ, применяемых в промышленности и сельском хозяйстве. Д.Н. Прянишников назвал аммиак "альфой и омегой" в обмене азотистых веществ у растений.

На схеме показаны основные области применения аммиака. Состав аммиака был установлен К. Бертолле в 1784 г. Аммиак NН 3 - основание, умеренно сильный восстановительный агент и эффективный комплексообразователь по отношению к катионам, обладающим вакантными связывающими орбиталями.

Физико-химические основы процесса . Синтез аммиака из элементов осуществляется по уравнению реакции

N 2 +3Н 2 =2NН 3 ; ?H<0

Реакция обратимая, экзотермическая, характеризуется большим отрицательным энтальпийным эффектом (?Н = -91,96 кДж/моль) и при высоких температурах становится еще более экзотермической (?H = -112,86 кДж/моль). Согласно принципу Ле Шателье при нагревании равновесие смещается влево, в сторону уменьшения выхода аммиака. Изменение энтропии в данном случае тоже отрицательно и не благоприятствует протеканию реакции. При отрицательном значении?S повышение температуры уменьшает вероятность протекания реакции,

Реакция синтеза аммиака протекает с уменьшением объема. Согласно уравнению реакции 4 моль исходных газообразных реагентов образуют 2 моль газообразного продукта. Основываясь на принципе Л е Шателье, можно сделать вывод о том, что в условиях равновесия содержание аммиака в смеси будет больше при высоком давлении, чем при низком.

4. Характеристика целевого продукта

Физико-химические свойства . Аммиачная селитра (нитрат аммония) NH4NO3 имеет молекулярную массу 80,043; чистый продукт - бесцветное кристаллическое вещество, содержащее 60% кислорода, 5% водорода и 35% азота (по 17,5% в аммиачной и нитратной формах). Технический продукт содержит не менее 34,0% азота.

Основные физико-химические свойства аммиачной селитр ы :

Аммиачная селитра в зависимостиот температуры существует в пяти кристаллических модификациях, термодинамически устойчивых при атмосферном давлении (табл.). Каждая модификация существует лишь в определенной области температур, и переход (полиморфный) из одной модификации в другую сопровождается изменениями кристаллической структуры, выделением (или поглощением) тепла, а также скачкообразным изменением удельного объема, теплоемкости, энтропии и т. д. Полиморфные переходы являются обратимыми - энантиотропными.

Таблица. Кристаллические модификации аммиачной селитры

Система NH 4 NO 3 -Н 2 О (рис. 11-2) относится к системам с простой эвтектикой. Эвтектической точке соответствует концентрация 42,4% МН 4 МО 3 и температура -16,9 °С. Левая ветвь диаграммы-линия ликвидуса воды отвечает условиям выделения льда в системе НН 4 МО 3 -Н 2 О. Правая ветвь кривой ликвидуса - кривая растворимости МН 4 МО 3 в воде. Эта кривая имеет три точки перелома, соответствующие температурам модификационных переходов NH 4 NO 3 1=11(125,8 °С), II=III (84,2 °С) и 111 =IV (32,2 "С). Температура плавления (кристаллизации) безводной аммиачной селитры равна 169,6 °С. Она понижается с увеличением влагосодержания соли.

Зависимость температуры кристаллизации NH 4 NO 3 (Tкрист, "С) от содержания влаги {X, %) до 1,5% описывается уравнением:

t крист = 169,6 - 13,2x (11.6)

Зависимость температуры кристаллизации аммиачной селитры с добавкой сульфата аммония от содержания влаги {X, %) до 1,5% и сульфата аммония (У, %) до 3,0% выражается уравнением :

t крист = 169,6 - 13,2Х+2,ОУ. (11.7).

Аммиачная селитра растворяется в воде с поглощением тепла. Ниже приведены значения теплот растворения (Q раств) аммиачной селитры различной концентрации в воде при 25 °С :

C (NH 4 NO 3)% масс 59,69 47.05 38,84 30,76 22,85 15,09 2,17

Q раств кДж/кг. -202,8 -225,82 -240,45 -256,13 -271,29 -287,49 -320,95

Аммиачная селитра хорошо растворима в воде, этиловом и метиловом спиртах, пиридине, ацетоне, жидком аммиаке.

Рис. 11-2. Диаграмма состояния системы NH 4 N 03 - H 20

Терморазложение . Аммиачная селитра представляет собой окислитель, способный поддерживать горение. При нагревании ее в замкнутом пространстве, когда продукты терморазложения не могут свободно удаляться, селитра может при некоторыхусловиях взрываться (детонировать). Она может взрываться также под воздействием сильных ударов, например при инициировании взрывчатыми веществами.

В начальный период нагревания при 110°С постепенно происходит эндотермическая диссоциация селитры на аммиак и азотную кислоту:

NH 4 NO 3 > NH 3 + НNО 3 - 174,4 кДж/моль. (11.9)

При 165 °С потеря массы не превосходит 6%/сут. Скорость диссоциации зависит не только от температуры, но и от соотношения между поверхностью селитры и ее объемом, содержания примесей и др.

Аммиак менее растворим в расплаве, чем азотная кислота, поэтому удаляется быстрее; концентрация азотной кислоты увеличивается до равновесного значения, определяемого температурой. Наличие в расплаве азотной кислоты обусловливает автокаталитический характер терморазложения.

В интервале температур 200-270 °С протекает в основном слабоэкзотермическая реакция разложения селитры на закись азота и воду:

NH 4 NO 3 > N 2 O+ 2H 2 О + 36,8 кДж/моль. (11.10)

Заметное влияние на скорость терморазложения оказывает диоксид азота, который образуется при термическом разложении азотной кислоты, являющейся продуктом диссоциации аммиачной селитры.

При взаимодействии диоксида азота с селитрой образуются азотная кислота, вода и азот:

NH 4 NО 3 + 2NO 2 > N 2 + 2НNО 3 + Н 2 О + 232 кДж/моль.(11.11)

Тепловой эффект этой реакции более чем в 6 раз превышает тепловой эффект реакции разложения селитры на N 2 О и Н 2 О. Таким образом, в закисленной селитре даже при обычных температурах вследствие значительной экзотермической реакции взаимодействия с диоксидом азота происходит самопроизвольное терморазложение, которое при большой массе аммиачной селитры может привести к ее бурному разложению.

При нагревании селитры в замкнутой системе при 210-220 °С происходит накопление аммиака, концентрация азотной кислоты снижается, поэтому происходит сильное торможение реакции разложения Процесс терморазложения практически прекращается, несмотря на то что большая часть соли еще не разложилась. При более высоких температурах аммиак окисляется быстрее, в системе накапливается азотная кислота и реакция протекает со значительным самоускорением, что может привести к взрыву.

Добавка к аммиачной селитре веществ, которые могут разлагаться с выделением аммиака (например, карбамид и ацетамид), тормозит терморазложение. Соли с катионами серебра или таллия значительно увеличивают скорость реакции вследствие образования комплексов с ионами нитрата в расплаве. Ионы хлора оказывают сильное каталитическое действие на процесс терморазложения. При нагревании смеси, содержащей хлорид и аммиачную селитру, до 220-230 °С начинается очень бурное разложение с выделением больших количеств газа. За счет теплоты реакции сильно повышается температура смеси, и разложение заканчивается в течение короткого времени.

Если хлоридсодержащую смесь поддерживать при температуре 150-200 °С, то в первый период времени, называемый индукционным, разложение будет протекать со скоростью, соответствующей разложению селитры при данной температуре. В этот период помимо разложения будут протекать также другие процессы, результатом которых являются, в частности, увеличение содержания кислоты в смеси и выделение небольшого количества хлора. После индукционного периода разложение протекает с большой скоростью и сопровождается сильным выделением тепла и образованием большого количества токсичных газов. При большом содержании хлорида разложение всей массы аммиачной селитры быстро заканчивается. Ввиду этого содержание хлоридов в продукте строго ограничено.

При эксплуатации механизмов, используемых в производстве аммиачной селитры, следует применять смазки, которые не взаимодействуют с продуктом и не снижают начальную температуру терморазложения. Для этой цели может быть, например, использована смазка ВНИИНП-282 (ГОСТ 24926-81).

Температура продукта, направляемого на хранение насыпью или на упаковку в мешки, должна быть не выше 55 °С. В качестве тары используют мешки из полиэтилена или крафтбумаги. Температуры, при которых начинаются активные процессы окисления аммиачной селитрой полиэтилена и крафтбумаги, составляют соответственно 270-280 и 220-230 °С. Опорожненные полиэтиленовые и крафтбумажные мешки должны быть очищены от остатков продукта и, если не могут быть использованы, то должны быть сожжены.

По энергии взрыва аммиачная селитра в три раза слабее большинства ВВ. Гранулированный продукт может в принципе детонировать, но инициирование капсулем-детонатором невозможно, для этого требуются большие заряды мощных ВВ.

Взрывное разложение селитры протекает по уравнению:

NH 4 NО 3 > N 2 + 0,5О 2 + 2Н 2 О + 118 кДж/моль. (11.12)

По уравнению (11.12) тепло взрыва должно было бы составить 1,48 МДж/кг. Однако вследствие протекания побочных реакций, одна из которых эндотермична (11.9), фактическое тепло взрыва составляет 0,96 МДж/кг и по сравнению с теплом взрыва гексогена (5,45 МДж) мало. Но для такого крупнотоннажного продукта как аммиачная селитра учет его взрывчатых свойств (хотя и слабых) имеет значение для обеспечения безопасности.

Требования потребителей к качеству выпускаемой промышленностью аммиачной селитры отражены в ГОСТ 2-85, согласно которому выпускают товарный продукт двух марок.

Прочность гранул определяют в соответствии с ГОСТ- 21560.2-82 при помощи приборов ИПГ-1, МИП-10-1 или ОСПГ -1М.

Рассыпчатость гранулированной аммиачной селитры, упакованной в мешки, определяют в соответствии с ГОСТ-21560.5-82.

ГОСТ 14702-79- " водоустойчива "

5. Физико-химическое обоснование основных процессов производства целевого продукта и экологической безопасности производства

Для получения практически неслеживающейся аммиачной селитры применяют ряд технологических приемов. Эффективным средством уменьшения скорости поглощения влаги гигроскопичными солями является их гранулирование. Суммарная поверхность однородных гранул меньше поверхности такого же количества мелкокристаллической соли, поэтому гранулированные удобрения медленнее поглощают влагу из воздуха. Иногда аммиачную селитру сплавляют с менее гигроскопичными солями, например с сульфатом аммония.

В качестве аналогично действующих добавок применяют также фосфаты аммония, хлорид калия, нитрат магния. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

NH 3 + HNO 3 = NH 4 NO 3

?H = -144,9 кДж (VIII)

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости.Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов.

Интенсивные условия проведения процесса в значительной мере могут быть обеспечены при разработке конструкции аппарата. Реакцию (VIII) проводят в непрерывно действующем аппарате ИТН (использование теплоты нейтрализации). Реактор представляет собой вертикальный цилиндрический аппарат, состоящий из реакционной и сепарационной зон. В реакционной зоне имеется стакан /, в нижней части которого расположены отверстия для циркуляции раствора. Несколько выше отверстий внутри стакана размещен барботер 2 для подачи газообразного аммиака, над ним - барботер 3 для подачи азотной кислоты. Реакционная парожидкостная смесь выходит из верхней части реакционного стакана; часть раствора выводится из аппарата ИТН и поступает в донейтрализатор, а остальная часть (циркуляционная) вновь идет вниз. Выделившийся из парожидкостной смеси соковый пар отмывается на колпачковых тарелках 6 от брызг раствора аммиачной селитры и паров азотной кислоты 20%-ным раствором селитры, а затем конденсатом сокового пара.

Теплота реакции (VIII) используется для частичного испарения воды из реакционной смеси (отсюда и название аппарата - ИТН). Разница в температурах в разных частях аппарата приводит к более интенсивной циркуляции реакционной смеси.

Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод.

На рис. приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе / до 70-80 С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалась 0,3-0,5% Р 2 О 5 и 0,05-0,2% сульфата аммония.

В агрегате установлены два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно нагретый в подогревателе 2 паровым конденсатом до 120- 130 °С. Количества подаваемых азотной кислоты и аммиака регулируют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.

Азотную кислоту (58-60%-ную) подогревают в аппарате 2 до 80-90 °С соковым паром из аппарата ИТН 8. Газообразный аммиак в подогревателе 1 нагревается паровым конденсатом до 120-160°С. Азотная кислота и газообразный аммиак в автоматически регулируемом соотношении поступают в реакционные части двух аппаратов ИТН 5, работающих параллельно. Выходящий из аппаратов ИТН 89-92%-ный раствор NH 4 NO 3 при 155-170 °С имеет избыток азотной кислоты в пределах 2-5 г/л, обеспечивающий полноту поглощения аммиака.

В верхней части аппарата соковый пар из реакционной части отмывается от брызг аммиачной селитры; паров HNO 3 и NН 3 20%-ным раствором аммиачной селитры из промывного скруббера 18 и конденсатом сокового пара из подогревателя азотной кислоты 2, которые подают на колпачковые тарелки верхней части аппарата. Часть сокового пара используют на подогрев азотной кислоты в подогревателе 2, а основную его массу направляют в промывной скруббер 18, где смешивают с воздухом из грануляционной башни, с паровоздушной смесью из выпарного аппарата 6 и промывают на промывных тарелках скруббера. Промытую паровоздушную смесь выбрасывают в атмосферу вентилятором 19.

Раствор из аппаратов ИТН 8 последовательно проходит донейтрализатор 4 и контрольный донейтрализатор 5. В донейтрализатор 4 дозируют серную и фосфорную кислоты в количестве, обеспечивающем содержание в готовом продукте 0,05-0,2% сульфата аммония и 0,3-0,5% P20s. Дозировку кислот плунжерными насосами регулируют в зависимости от нагрузки агрегата.

После нейтрализации избыточной НМОз в растворе аммиачной селитры из аппаратов ИТН и введенных серной и фосфорной кислот в донейтрализаторе 4, раствор проходит контрольный донейтрализатор 5 (куда аммиак автоматически подается только в случае проскока кислоты из донейтрализатора 4) и поступает в выпарной аппарат 6. В отличие от агрегата АС-67 верхняя часть выпарного аппарата 6 снабжена двумя ситчатыми промывными тарелками, на которые подают паровой конденсат, отмывающий паровоздушную смесь из выпарного аппарата от аммиачной селитры

Плав селитры из выпарного аппарата 6, пройдя гидрозатвордонейтрализатор 9 и фильтр 10, поступает в бак 11, откуда его погружным насосом 12 по трубопроводу с антидетонационной насадкой подают в напорный бак 15, а затем к грануляторам 16 или 17. Безопасность узла перекачивания плава обеспечивается системой автоматического поддержания температуры плава при его упаривании в выпарном аппарате (не выше 190 °С), контролем и регулированием среды плава после донейтрализатора 9 (в пределах 0,1- 0,5 г/л NН 3), контролем температуры плава в баке 11, корпусе насоса 12 и напорном трубопроводе. При отклонении регламентных параметров процесса перекачивание плава автоматически прекращается, а плав в баках 11 и выпарном аппарате 6 при повышении температуры разбавляют конденсатом.

Предусмотрено гранулирование двумя типами грануляторов: виброакустическими 16 и монодисперсными 17. Более надежными и удобными в работе оказались виброакустические грануляторы, которые и эксплуатируются на крупнотоннажных агрегатах.

Плав гранулируют в прямоугольной металлической башне 20 с размерами в плане 8х11 м. Высота полета гранул 55 м обеспечивает кристаллизацию и остывание гранул диаметром 2-3 мм до 90-120°С при встречном потоке воздуха летом до 500 тыс. м/ч и зимой (при низких температурах) до 300-400 тыс. м/ч. В нижней части башни расположены приемные конуса, с которых гранулы ленточным конвейером 21 направляют в аппарат охлаждения КС 22.

Аппарат охлаждения 22 разделен на три секции с автономной подачей воздуха под каждую секцию решетки кипящего слоя. В головной его части имеется встроенный грохот, на котором отсеиваются комки селитры, образовавшиеся вследствие нарушения режима работы грануляторов. Комки направляют на растворение. Воздух, подаваемый в секции аппарата охлаждения вентиляторами 23, подогревают в аппарате 24 за счет тепла сокового пара из аппаратов ИТН. Подогрев производят при влажности атмосферного воздуха выше 60%, а в зимнее время во избежание резкого охлаждения гранул. Гранулы аммиачной селитры последовательно проходят одну, две или три секции аппарата охлаждения в зависимости от нагрузки агрегата и температуры атмосферного воздуха. Рекомендуемая температура охлаждения гранулированного продукта в зимнее время-ниже 27 °С, летом-до 40-50 °С. При эксплуатации агрегатов в южных районах, где значительное число дней температура воздуха превышает 30 °С, третья секция аппарата охлаждения работает на предварительно охлажденном воздухе (в испарительном аммиачном теплообменнике). Количество воздуха, подаваемое в каждую секцию, 75-80тыc.мі/ч. Напор вентиляторов 3,6 кПа. Отработанный воздух из секций аппарата при температуре 45-60°С, содержащий до 0,52 г/м 3 пыли аммиачной селитры, направляют в грануляционную башню, где он смешивается с атмосферным воздухом и поступает на промывку в промывной скруббер 18.

Охлажденный продукт направляют на склад или на обработку ПАВ (диспергатором НФ), а затем на отгрузку навалом или на упаковку в мешки. Обработку диспергатором НФ ведут в полом аппарате 27 с центральнорасположенной форсункой, опрыскивающей кольцевой вертикальный поток гранул, или во вращающемся барабане. Качество обработки гранулированного продукта во всех применяемых аппаратах удовлетворяет требование ГОСТ 2-85.

Гранулированную аммиачную селитру хранят на складе в буртах высотой до 11 м. Перед отправкой потребителю селитру из склада подают на рассев. Нестандартный продукт растворяют, раствор возвращаютнаупарку. Стандартный продукт обрабатывают диспергатором НФ и отгружают потребителям.

Емкости для серной и фосфорной кислот и насосное оборудование для их дозирования скомпоновано в самостоятельный блок. Центральный пункт управления, электроподстанция, лаборатория, служебные и бытовые помещения расположены в отдельном здании.

Размещено на Allbest.ru

...

Подобные документы

    Физико-химические свойства аммиачной селитры. Основные стадии производства аммиачной селитры из аммиака и азотной кислоты. Установки нейтрализации, работающие при атмосферном давлении и работающие при разрежении. Утилизация и обезвреживание отходов.

    курсовая работа , добавлен 31.03.2014

    Характеристика выпускаемой продукции, исходного сырья и материалов для производства. Технологический процесс получения аммиачной селитры. Нейтрализация азотной кислоты газообразным аммиаком и выпаривание до состояния высококонцентрированного плава.

    курсовая работа , добавлен 19.01.2016

    Автоматизация производства гранулированной аммиачной селитры. Контуры стабилизации давления в линии подачи сокового пара и регулирования температуры конденсата пара из барометрического конденсатора. Контроль давления в линии отвода к вакуум-насосу.

    курсовая работа , добавлен 09.01.2014

    Аммиачная селитра как распространённое и дешёвое азотное удобрение. Обзор существующих технологических схем его производства. Модернизация производства аммиачной селитры с получением сложного азотно-фосфатного удобрения на ОАО "Череповецкий "Азот".

    дипломная работа , добавлен 22.02.2012

    Характеристика исходного сырья, вспомогательных материалов для получения азотной кислоты. Выбор и обоснование принятой схемы производства. Описание технологической схемы. Расчеты материальных балансов процессов. Автоматизация технологического процесса.

    дипломная работа , добавлен 24.10.2011

    Промышленные способы получения разбавленной азотной кислоты. Катализаторы окисления аммиака. Состав газовой смеси. Оптимальное содержание аммиака в аммиачно-воздушной смеси. Типы азотнокислотных систем. Расчет материального и теплового баланса реактора.

    курсовая работа , добавлен 14.03.2015

    Обзор современных методов производства азотной кислоты. Описание технологической схемы установки, конструкция основного аппарата и вспомогательного оборудования. Характеристика исходного сырья и готовой продукции, побочные продукты и отходы производства.

    дипломная работа , добавлен 01.11.2013

    Производство и применение катализаторов синтеза аммиака. Строение оксидного катализатора, влияние на активность условий его восстановления. Механизм и кинетика восстановления. Термогравиметрическая установка восстановления катализаторов синтеза аммиака.

    дипломная работа , добавлен 16.05.2011

    Описания грануляторов для гранулирования и смешивания сыпучих материалов, увлажненных порошков и паст. Производство комплексных удобрений на основе аммиачной селитры и карбамида. Упрочнение связей между частицами сушкой, охлаждением и полимеризацией.

    курсовая работа , добавлен 11.03.2015

    Технология и химические реакции стадии производства аммиака. Исходное сырье, продукт синтеза. Анализ технологии очистки конвертированного газа от диоксида углерода, существующие проблемы и разработка способов решения выявленных проблем производства.


Федеральное агентство по образованию

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе по общей химической технологии на тему:

«Производство аммиачной селитры. Расчет нейтрализатора производительностью G=10 т/час NH 4 NO 3

Выполнил:
студент гр. ХН-091
Артеменко А.А.
Проверил:
Ушаков А.Г.

Кемерово 2012

Введение 4
1.Технико-экономическое обоснование выбранного способа 7
2.Технологическая схема производства аммиачной селитры 12
3.Расчет материального и теплового балансов нейтрализ ации
азотной кислоты аммиаком 17
3.1.Материальный баланс 17
3.2.Тепловой баланс 20
4.Выбор размеров контактного аппарата 21
Заключение 22
Список использованной литературы 23

Введение

Минеральные удобрения находят широкое применение, как в сельском хозяйстве, так и в различных областях промышленности. В отличие от мирового рынка, именно промышленное потребление азотных удобрений является основным на внутреннем рынке.
Важнейшим видом минеральных удобрений являются азотные: аммиачная селитра, карбамид, сульфат аммония, водные растворы аммиака.
Аммиачная селитра, или нитрат аммония, NH 4 NO 3 – кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы легко усваиваются растениями .
Основными потребителями аммиачной селитры являются следующие отрасли:
- сельское хозяйство;
- производство сложных минеральных удобрений;
- горнопромышленный комплекс (собственное производство ВВ);
- угольная промышленность (собственное производство ВВ);
- производство взрывчатых веществ;
- строительная индустрия;
Аммиачная селитра обладает потенциальной, или физиологической кислотностью. Эта кислотность возникает в почве, с одной стороны, в результате более быстрого потребления растениями ионов (NH 4 +) и соответственно накопления кислотного остатка (ионов NO 3) в почве и, с другой стороны, в результате окисления аммиака в азотную кислоту нитрифицирующими микроорганизмами почвы. При длительном применении аммиачной селитры потенциальная кислотность этого удобрения может привести к изменениям химического состава почвы, что в ряде случаев служит причиной снижения урожайности

Сельскохозяйственных культур.
Гранулированную аммиачную селитру применяют больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ. Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способность поглощать влагу из воздуха). Это является причинного того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений – сыпучий материал превращается в
твердую монолитную массу. Нитрат аммония имеет ряд преимуществ перед другими азотными удобрениями, так как содержит 34 % азота и в этом отношение уступает лишь карбамиду .
Кроме того аммиачная селитра содержит одновременно аммиачную и нитратную форму азота, которые используются растениями в разные периоды роста, что положительно складывается на увеличение урожайности почти всех сельскохозяйственных культур.
Отрасли, использующие аммиачную селитру как сырье для производства взрывчатых веществ (ВВ) являются вторым по емкости сегментом ее потребления на внутреннем рынке после сельского хозяйства. Аммиачно-
селитряные ВВ представляют собой большую группу взрывчатых веществ.
Их принято относить к бризантным взрывчатым веществам пониженной мощности (в тротиловом эквиваленте на 25% слабее тротила). Однако это не вполне так. По бризантности аммиачно-селитряные ВВ, как правило, мало в

Чем уступают тротилу, а по фугасности превышают тротил, причем некоторые из них весьма значительно. Аммиачно-селитряные ВВ в большей степени находят применение в народном хозяйстве и в меньшей степени в военном деле. Причиной такого применения является значительно меньшая стоимость аммиачно-селитряных ВВ, их значительно более низкая надежность в применении. Прежде всего, это связано с большой гигроскопичностью аммиачных ВВ, поэтому при увлажнении более 3% такие ВВ полностью теряют способность взрываться. Они подвержены слеживаемости, т.е. теряют при хранении сыпучесть, из-за чего полностью

Или частично теряют взрывную способность.
Важнейшими причинами слеживаемости являются:
1.Повышенное содержание влаги в готовом продукте;
2.Неоднородность и низкая механическая прочность частиц селитры;
3.Изменение кристаллических модификаций аммиачной селитры.
Нитрат аммония – сильный окислитель. С растворами некоторых веществ он реагирует бурно, вплоть до взрыва (нитрит натрия).Малочувствителен к толчкам, трению, ударам, сохраняет устойчивость при попадание искр различной интенсивности. Он способен взрываться только под действием сильного детонатора или при термическом разложении. Селитра не является горючим продуктом. Горение поддерживает только оксид азота. Таким образом одним из условий производства аммиачной селитры является чистота ее исходных растворов и готового продукта .

2.Технологическая схема производства аммиачной селитры

Процесс производства аммиачной селитры состоит из следующих основных стадий:
1.Нейтрализация азотной кислоты газообразным аммиаком;
2.Упаривание растворов аммиачной селитры до состояния плава;
3.Кристаллизация соли из плава;
4.Сушка или охлаждение соли;
5.Упаковка.
Для получения почти неслеживающейся аммиачной селитры применяют ряд технологических приемов. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:
NH 3 + HNO 3 = NH 4 NO 3 (2)
?H = -144,9 кДж
Тепловой эффект реакции при взаимодействии 100%-ных исходных веществ составляет 35,46 ккал/моль .

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов. Интенсивные условия проведения процесса в значительной мере могут быть обеспечены при разработке конструкции аппарата. Реакцию (1) проводят в непрерывно действующем аппарате ИТН (использование теплоты нейтрализации) (рис.2.1).

Рис.2.1. Аппарат ИТН

Реактор представляет собой вертикальный цилиндрический аппарат, состоящий из реакционной и сепарационной зон. В реакционной зоне имеется стакан 1, в нижней части которого расположены отверстия для циркуляции раствора. Несколько выше отверстий внутри стакана размещен барботер 2 для подачи газообразного аммиака, над ним – барботер 3 для подачи азотной кислоты. Реакционная парожидкостная смесь выходит из верхней части реакционного стакана; часть раствора выводится из аппарата ИТН и поступает в донейтрализатор, а остальная часть (циркуляционная) вновь идет вниз. Выделившиеся из парожидкостной смеси соковый пар отмывается на колпачковых тарелках 6 от брызг раствора аммиачной селитры и паров азотной кислоты 20 %-ным раствором селитры, а затем конденсатом сокового пара.
Теплота реакции (1) используется для частичного испарения воды из реакционной смеси (отсюда и название аппарата – ИТН). Разница в температурах в разных частях аппарата приводит к более интенсивной циркуляции реакционной смеси.

Технологический процесс производства аммиачной селитры включает, кроме стадий нейтрализации азотной кислоты аммиаком, также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработка гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистка газовых выбросов и сточных вод.
На рис.2.2 приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе 1 до 70-80?С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалось 0,3-0,5% Р 2 О 5 и 0,05-0,2% сульфата аммония.
В агрегате установлено два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно
нагретый в подогревателе 2 паровым конденсатом до 120-130?С. Количества подаваемых азотной кислоты и аммиака регулируют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.

Рис.2.2 Схема агрегата аммиачной селитры АС-72
В нижней части аппарата происходит реакция нейтрализации при температуре 155-170?С; при этом получается концентрированный раствор, содержащий 91-92% NH 4 NO 3 . В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров азотной кислоты. Часть теплоты сокового пара используется на подогрев азотной кислоты. Затем соковый пар направляют на очистку и выбрасывают в атмосферу. Выходящий из нейтрализатора раствор аммиачной селитры имеет слабокислую или слабощелочную реакцию.
Кислый раствор аммиачной селитры направляют в донейтрализатор 4; куда поступает аммиак, необходимый для взаимодействия с оставшейся азотной кислотой. Затем раствор подают в выпарной аппарат 5. Полученный плав, содержащий 99,7-99,8% селитры, при 175?С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16.
В верхней части башни расположены грануляторы 7 и 8, в нижнюю часть которых подают воздух, охлаждающий падающие сверху капли селитры. Во время падения капель селитры с высоты 50-55 м при обтекании их потоком воздуха образуются гранулы удобрения. Температура гранулы на

Выходе из башни равна 90-110?С; горячие гранулы охлаждают в аппарате кипящего слоя 15. Это прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подают воздух; при этом создается псевдоожиженный слой гранул селитры, поступающих по транспортеру из грануляционной башни. Воздух после охлаждения попадает в грануляционную башню.
Гранулы аммиачной селитры транспортером 14 подают на обработку поверхностно-активными веществами во вращающийся барабан 11. Затем готовое удобрение транспортером 12 направляют на упаковку.
Воздух, выходящий из грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержат непрореагировавший аммиак и

Азотную кислоту, а также частицы унесенной аммиачной селитры. Для этих
потоков в верхней башни грануляционной башни расположены шесть
параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20-30%-ным раствором аммиачной селитры, которая подается насосом 18 из сборника 17. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к аммиачной селитры, и, следовательно, используется для выработки продукции. Очищенный воздух отсасывается из грануляционной башни вентилятором 9 и выбрасывается в атмосферу .

3.Расчет материального и теплового баланса нейтрализации азотной кислоты аммиаком

3.1Материальный баланс

Исходные данные
Концентрация исходной азотной кислоты 50 % HNO 3 ;
Концентрация аммиака 100 % NH 3 ;
Концентрация получаемого раствора 70% NH 4 NO 3 ;
Производительность установки G=10 т/час
В основе получения аммиачной селитры лежит следующая реакция:

NH 3 + HNO 3 = NH 4 NO 3
M(NH 3)=17г/моль
М(NH 4 NO 3)=80г/моль
1.Определим количество прореагировавшего 100%-ного аммиака:
m(NH 3)=17*10000/80=2125 кг/час
М(HNO 3)=63г/моль
2.Определим количество прореагировавшей 100%-ной азотной кислоты:
m(HNO 3)=63*10000/80=7875 кг/час
Тогда количество прореагировавшей 50 % - ной азотной кислоты составляет:
m(HNO 3)= 7875/0,5 = 15750кг/час
Находим общее количество реагентов, поступающих в нейтрализатор:
3.Количество 70 % - ного раствора аммиачной селитры:
m(NH 4 NO 3)= 10000/0,7=14285,7 кг/час
4.Количество испарившейся воды при нейтрализации:
m(H 2 O)= 2125 +15750 – 14285,7=3589,3 кг/час
Расход NH 3 + Расход HNO 3 =Количество NH 4 NO 3 + соковый пар

2125 +15750 = 14285,7+3589,3
17875кг/час=17875кг/час

Результаты расчетов сводим в таблицу:

Таблица 1
Материальный баланс

3.2Тепловой баланс

Исходные данные.
Температура кипения аммиачной селитры 120?С.

Давление в нейтрализаторе 117,68 кПа.
Теплоемкости:

При 30 ?: С НNO3 =2,763 кДж/(м 3 ·?С);
При 50?С:C NH3 =2,185 кДж/ (м 3 ·?С);
При 123,6?С:С NH4NO3 =2,303 кДж/ (м 3 ·?С);

Решение.
Q прих. =Q расх.
Приход теплоты:
1.Теплота, вносимая азотной кислотой:
Q 1 = 15907,5 * 2,763 * 30= 1318572 кДж = 1318,572 МДж;
2.Теплота, поступающая с газообразным аммиаком:
Q 2 = 2146,25 * 2,185 * 50 = 234478кДж =234,478 МДж;
При производстве аммиачной селитры выделяется теплота, которую достаточно точно можно определить графически. Для 50 % азотной кислоты Q=105,09 кДж/моль.
3.При нейтрализации выделяется:
Q 3 = (105,09* 1000 * 10000)/80 = 13136250кДж = 13136,25МДж;
Суммарный приход:
Q прих. = Q 1 + Q 2 + Q 3 = 1318572+234478 +13136250 = 14689300кДж.
Расход теплоты:
1.Раствор аммиачной селитры уносит:
Q 1 " = 14285,7* 2,303 * t кип. ;

При давлении 117,68 кПа, температура насыщенного водяного пара равна 103?С.
Температура кипения воды 100 ?С.
Температурная депрессия равна:
?t = 120 – 100 = 20 ?С;
Определим температуру кипения 70 % раствора аммиачной селитры:
t кип = 103 + 20 * 1,03 = 123,6 ?С;
Q 1 " = 14285,7* 2,303 * 123,6 = 4066436 кДж = 4066,436 МДж.
2.Теплота, расходуемая на испарение воды:
Q 2 " = 3589,3 * 2379,9 = 8542175 кДж = 8542,175МДж.
3.Теплопотери:
Q потерь =Q прих. -Q расх. = 14689300-8542175-4066436= 2080689кДж=2080,689МДж.
Суммарный расход:
Q расх. = Q 1 " + Q 2 "+ Q потерь =4066436+8542175+2080689 =14689300 кДж.

Результаты расчетов сводим в таблицу:

Таблица 2
Тепловой баланс

Приход
Расход
Статья
кДж
%
Статья
кДж
%
Q 1
1318572
8,98
Q 1 "
4066436
27,7
Q 2
234478
1,62
Q 2 "
8542175
58,1
Q 3
13136250
89,4
Q потерь
2080689
14,2
Итого:
14689300
100,00
Итого:
14689300
100,00

1.Технико-экономическое обоснование выбранного способа

Наиболее распространенные способы производства аммиачной селитры основаны на реакции нейтрализации азотной кислоты аммиаком.
Химическое взаимодействие газообразного аммиака и растворов азотной кислоты протекает с большой скоростью, но лимитируется массообменном и гидродинамическими условиями. Поэтому большое значение имеет интенсивность смешения реагентов; которая в основном зависит от соотношения между скоростями движения азотной кислоты и аммиака в реакторе. Наиболее тесное соприкосновение реагентов достигается, если линейная скорость газообразного аммиака превышает линейную скорость раствора азотной кислоты не более чем в 15 раз .
Процесс нейтрализации протекает с выделением тепла. В производственных условиях применяется азотная кислота концентрацией 45-60%.Чем выше концентрация применяемой азотной кислоты, тем меньше значение теплоты ее разбавления и тем больше тепловой эффект нейтрализации растворов азотной кислоты аммиаком.
Суммарное количество тепла Q ? ,выделяющегося в результате реакции нейтрализации растворов азотной кислоты газообразным аммиаком определяется уравнением:
Q ? =Q реак. -(q 1 -q 2) (1)
Возможны следующие принципиально различные схемы получения аммиачной селитры с использованием тепла нейтрализации:
- установки, работающие при атмосферном давлении (избыточное давление сокового пара 0,15-0,2 ат);
- установки с вакуум- испарителем;
- установки, работающие под давлением, с однократным использованием
тепла сокового пара;

Установки, работающие под давлением, с двукратным использованием тепла сокового пара (получение концентрированного плава).
Наибольшее распространение в России получила схема нейтрализации под атмосферным давлением, изображенная на рисунке 3.

Рис. 1.1 Схема нейтрализации азотной кислоты под атмосферным давлением:
1 – бак для азотной кислоты; 2 – подогреватель аммиака; 3 – сепаратор жидкого аммиака;4 – аппарат ИТН; 5 – ловушка-промыватель сокового пара; 6 – вакуумный выпарной аппарат I ступени; 7 – донейтрализатор.
В 1967-1970-х годах была разработана технологическая схема и выполнен проект крупнотоннажного агрегата АС-67 со среднесуточной мощностью 1400 т.
Особенностью агрегата АС-67 является размещение всего основного технологического оборудования (от стадии нейтрализации до стадии получения плава) на грануляционной башне каскадом, без промежуточных операций перекачивания растворов аммиачной селитры. Другая особенность агрегата АС-67 заключается в том, что воздух не отсасывают из башни, а нагнетают в башню снизу под решетку кипящего слоя одним мощным вентилятором, т. е. башня работает под подпором.
Размещение всего основного технологического оборудования на грануляционной башне, как отмечалось, упростило схему ввиду отказа от перекачивания концентрированных растворов селитры. В то же время такое решение привело к определённым усложнениям процессов строительства и

Эксплуатации агрегата:
- ствол башни несет большую нагрузку, вследствие чего он выполнен в железобетоне с внутреннй футеровкой кислотноупорным кирпичем, что приводит к значительным капитальным затратам, повышению трудоемкости и длительности строительства;
- надстройка с технологическим оборудованием расположена на большой высоте, поэтому должна быть полностью закрыта, отапливаемой и вентилируемой.
- монтаж оборудования может быть начат только после возведения башни, что удлиняет цикл строительно-монтажных работ;
- расположение оборудования на высоте вызывает повышение требований к работоспособности подъемно-транспортного оборудования (лифтов);
- эксплуатация башни под напором усложняет обслуживание аппарата охлаждения продукта в кипящем слое, встроенного в башню;

Применение встроенного охлаждающего аппарата приводит к увеличению расхода энергии на подачу воздуха в башню.
С целью устранения недостатков схемы АС-67 и повышения качества продукта в схеме АС-72 приняты следующие технические решения:
- предусмотрено повышение прочности гранул как результат воздействия трёх факторов: применения сульфатно-фосфатной добавки, получения более крупных гранул, регулирования темпа охлаждения гранул, для чего был применен секционированный выносной аппарат с кипящим слоем и раздельной подачей воздуха в каждую секцию;
- оборудование размещено внизу на отдельной этажерке; для перекачивания плава применен насос.
Технологическая схема производства селитры по схеме АС-72 состоит из тех же стадий, что и по схеме АС-67; дополнительной является стадия перекачивания высококонцентрированного плава аммиачной селитры на верх грануляционной башни.

Принципиальных отличий в технологическом процессе на стадиях нейтрализации и выпарки в схеме АС-72 по сравнению с АС-67 нет. Отличием является подогрев азотной кислоты в двух подогревателях индивидуально для каждого аппарата ИТН, что позволило установить автоматические регуляторы расхода на линии подачи азотной кислоты на подогрев. И еще одним характерным отличием является установка лишь одного более мощного донейтрализатора, вместо двух.
Рост требований к охране окружающей среды поставил в повестку дня существенное снижение выброса в атмосферу аэрозольных частиц аммиачной селитры и аммиака. Более высокая степень очистки этих выбросов – главная отличительная черта модернизированных агрегатов АС-72М.

В современных производствах аммиачной селитры удельные расходы сырья близки к теоретическим. Поэтому существенной разницы себестоимости продукта, получаемого в крупнотоннажных агрегатах АС-67, АС-72 и АС-72М, нет.
Различие технико- экономических показателей в зависимости от конкретных схем лежит главным образом в области расхода энергоресурсов: пара, электроэнергии, оборотной воды. Расход пара определяется исходной концентрацией азотной кислоты, степенью использования тепла сокового пара, получаемого на стадии нейтрализации.
Расход электроэнергии в производствах аммиачной селитры по абсолютным значениям не велик. Но он может колебаться в зависимости от применяемого способа охлаждения продукта (непосредственно в башне при полёте гранул,
в аппаратах с псевдоожиженным слоем, во вращающихся барабанах), от способов очистки воздуха, выбра
В промышленности в основном применяют агрегат АС-72,где в результате применения монодисперсных грануляторов обеспечен выровненный гранулометрический состав, снижено содержание мелких гранул, уменьшена скорость воздуха по сечению башни, т.е. созданы более благоприятные

Условия для уменьшения уноса пыли из башни и снижения нагрузки на промывной скруббер .

Список использованной литературы

1. Расчеты химико-технологических процессов. Под общей редакцией проф. Мухленова И.П. Л., «Химия», 1976. –304с.
2.http://www.xumuk.ru//
3.Клевке.В.А.,”Технология азотных удобрений”,М.,Госхимиздат, 1963г.
4.Общая химическая технология: Важнейшие химические производства/И.П.Мухленов.-4-е изд.-М.:Высш.шк.,1984.- 263с.
5.Основные процессы и аппараты химической технологии: Пособие по проектированию. Под ред.Ю.И.Дытнерского,2-е изд.,М.: Химия,1991.-496 с.
6.Миниович М. А. Производство аммиачной селитры. М. «Химия», 1974. – 240 с.

Заключение

В данной курсовой работе изучили производство аммиачной селитры и принципиальную технологическую схему, обосновали выбор основного и вспомогательного оборудования в производстве аммиачной селитры, рассчитали материальный и тепловой балансы стадии нейтрализации.
Рассмотрели физические, химические свойства аммиачной селитры. Так как аммиачная селитра обладает такими свойствами как слеживаемость и гигроскопичность необходимо принимать следующие меры, для уменьшения слеживаемости применять порошкообразные добавки, припудривающие частицы соли. Одни из добавок уменьшают активную поверхность частиц, другие обладают адсорбционными свойствами. Прибавлять к слеживающимся солям очень малые количества красителей, а также охлаждать аммиачную селитру перед упаковкой в тару. Чтобы уменьшить гигроскопичность необходимо селитру гранулировать. Гранулы имеют меньшую удельную поверхность, чем мелкокристаллическая соль, поэтому медленнее увлажняется.
Аммиачная селитра является наиболее важным и распространенным азотным удобрением которое применяется сельском хозяйстве. Поэтому необходимо соблюдать условия хранения аммиачной селитры и создавать новые технологические решения.

4.Выбор размеров контактного аппарата

Определяем объем аппарата использующего теплоту нейтрализации:

Время контактирования, час;

M- производительность аппарата,м 3 /час.

G=10000 кг/час=36000000 кг/сек.

Ам.селитры =1725 кг/м 3

M= G/ ? ам.селитры

M=36000000 кг/сек: 1725 кг/м 3 =20869,5 м 3 /сек

V= 1сек·20869, 5 м 3 /сек=20869,5 м 3

Государственное образовательное учреждение
высшего профессионального образования
«Кузбасский государственный технический университет»

Кафедра химической технологии твердого топлива и экологии

УТВЕРЖДАЮ
Дата

Зав. кафедрой_______________
(подпись)

Студенту

1. Тема проекта





5. Консультанты по проекту (с указанием относящихся к ним разделов проекта)

2. ______________________________ _____________________
Дата выдачи задания _____________
Руководитель ________________________
(подпись)
7. Основная литература и рекомендуемые материалы
______________________________ ______________________________ ______________________________ ______________________________ ______________________________ _________________
Задание принял к исполнению (дата) _________________

Федеральное агентство по образованию

Государственное образовательное учреждение
высшего профессионального образования
«Кузбасский государственный технический университет»

Кафедра химической технологии твердого топлива и экологии

УТВЕРЖДАЮ
Дата

Зав. кафедрой_______________
(подпись)
Задание по курсовому проектированию

Студенту

1. Тема проекта
______________________________ _____________________

Утверждена приказом по вузу от
2. Срок сдачи студентом законченного проекта
3. Исходные данные к проекту
______________________________ ______________________

4. Объем и содержание пояснительной записки (основных вопросов общей и специальной части) и графического материала
______________________________ ______________________________ ______________________________ ______________________________
5. Консультанты по проекту (с указанием относящихся к ним разделов проекта)
1. ______________________________ _____________________
2. ______________________________ _____________________ Дата выдачи задания _____________ Руководитель ________________________ (подпись) 7. Основная литература и рекомендуемые материалы ______________________________ ______________________________ ______________________________ ______________________________ ______________________________ _________________ Задание принял к исполнению (дата) _________________

Аммиачная селитра - одно из наиболее распространенных удобрений.

Аммиачную селитру (иначе - азотнокислый аммоний) получают на заводах из азотной кислоты и аммиака путем химического взаимодействия этих соединений.

Процесс производства состоит из следующих стадий:

  1. Нейтрализация азотной кислоты газообразным аммиаком.
  2. Упаривание раствора азотнокислого аммония.
  3. Кристаллизация азотнокислого аммония.
  4. Сушка соли.

На рисунке дана в упрощенном виде технологическая схема производства аммиачной селитры. Как же протекает этот процесс?

Исходное сырье - газообразный аммиак и азотная кислота (водный раствор) - поступает в нейтрализатор. Здесь в результате химического взаимодействия обоих веществ происходит бурная реакция с выделением большого количества тепла. При этом часть воды испаряется, и образующийся водяной пар (так называемый соковый пар) через ловушку отводится наружу.

Неполностью упаренный раствор азотнокислого аммония поступает из нейтрализатора в следующий аппарат - донейтрализатор. В нем после добавки водного раствора аммиака заканчивается процесс нейтрализации азотной кислоты.

Из донейтрализатора раствор азотнокислого аммония перекачивается в выпарной аппарат - непрерывно действующий вакуум-аппарат. Раствор в таких аппаратах выпаривается при пониженном давлении, в данном случае - при давлении 160-200 мм рт. ст. Тепло для упаривания передается раствору через стенки трубок, обогреваемых паром.

Упаривание ведется до тех пор, пока концентрация раствора не достигнет 98%. После этого раствор идет на кристаллизацию.

По одному способу кристаллизация азотнокислого аммония происходит на поверхности барабана, который изнутри охлаждается. Барабан вращается, на поверхности его образуется корка кристаллизующегося азотнокислого аммония толщиной до 2 мм. Корка срезается ножом и по желобу направляется на сушку.

Сушат аммиачную селитру горячим воздухом во вращающихся сушильных барабанах при температуре 120°. После сушки готовый продукт отправляют на упаковку. Аммиачная селитра содержит 34-35% азота. Чтобы уменьшить слеживаемость, в ее состав при производстве вводят различные добавки.

Аммиачная селитра выпускается заводами в гранулированном виде и в виде чешуек. Чешуйчатая селитра сильно поглощает влагу из воздуха, поэтому при хранении она расплывается и теряет рассыпчатость. Гранулированная аммиачная селитра имеет вид зерен (гранул).

Гранулирование аммиачной селитры большей частью производится в башнях (см. рисунок). Упаренный раствор азотнокислого аммония - плав - разбрызгивается при помощи центрифуги, укрепленной в потолке башни.

Плав непрерывной струей вливается во вращающийся дырчатый барабан центрифуги. Проходя через отверстия барабана, брызги превращаются в шарики соответствующего диаметра и во время падения вниз затвердевают.

Гранулированная аммиачная селитра обладает хорошими физическими свойствами, не слеживается при хранении, хорошо рассеивается в поле и медленно поглощает влагу из воздуха.

Сульфат аммония — (иначе - сернокислый аммоний) содержит 21 % азота. Большую часть сульфата аммония выпускает коксохимическая промышленность.

В предстоящие годы большое развитие получит производство наиболее концентрированного азотного удобрения - карбамида, или мочевины, которая содержит 46% азота.

Мочевину получают под высоким давлением синтезом из аммиака и углекислоты. Ее применяют не только как удобрение, но и для подкормки скота (дополняют белковое питание) и как полупродукт для производства пластмасс.

Большое значение имеют и жидкие азотные удобрения - жидкий аммиак, аммиакаты и аммиачная вода.

Жидкий аммиак получают из газообразного аммиака путем сжижения под высоким давлением. В нем содержится 82% азота. Аммиакаты представляют собой растворы аммиачной селитры, кальциевой селитры или мочевины в жидком аммиаке с небольшой добавкой воды. В них содержится до 37% азота. Аммиачная вода - водный раствор аммиака. В ней 20% азота. По своему действию на урожай жидкие азотные удобрения не уступают твердым. А производство их обходится намного дешевле, чем твердых, так как отпадают операции по упариванию раствора, сушке и гранулированию. Из трех видов жидкого азотного удобрения наибольшее распространение получила аммиачная вода. Разумеется, внесение жидких удобрений в почву, а также их хранение и транспортировка требуют специальных машин и оборудования.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Аммиачная селитра, или нитрат аммония, NH 4 NO 3 - кристаллическое вещество белого цвета, содержащее 35% азота в аммонийной и нитратной формах, обе формы азота легко усваиваются растениями. Гранулированную аммиачную селитру применяют в больших масштабах перед посевом и для всех видов подкормок. В меньших масштабах ее используют для производства взрывчатых веществ.

Аммиачная селитра хорошо растворяется в воде и обладает большой гигроскопичностью (способностью поглощать влагу из воздуха), что является причиной того, что гранулы удобрения расплываются, теряют свою кристаллическую форму, происходит слеживание удобрений - сыпучий материал превращается в твердую монолитную массу.

Принципиальная схема производства нитрата аммония

Для получения практически неслеживающейся аммиачной селитры применяют ряд технологических приемов. Эффективным средством уменьшения скорости поглощения влаги гигроскопичными солями является их гранулирование. Суммарная поверхность однородных гранул меньше поверхности такого же количества мелкокристаллической соли, поэтому гранулированные удобрения медленнее поглощают влагу из

В качестве аналогично действующих добавок применяют также фосфаты аммония, хлорид калия, нитрат магния. В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

NH 3 +HNO 3 = NH 4 NO 3 ; ΔН = -144.9кДж

Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения большое значение имеет перемешивание реагентов.

Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования плава, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод. На рис. 8.8 приведена схема современного крупнотоннажного агрегата по производству аммиачной селитры АС-72 мощностью 1360 т/сут. Исходная 58-60%-ная азотная кислота подогревается в подогревателе до 70 - 80°С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 к азотной кислоте добавляют фосфорную и серную кислоты в таких количествах, чтобы в готовом продукте содержалась 0,3-0,5% Р 2 О 5 и 0,05-0,2% суль- фата аммония. В агрегате установлены два аппарата ИТН, работающие параллельно. Кроме азотной кислоты в них подают газообразный аммиак, предварительно нагретый в подогревателе 2 паровым конденсатом до 120- 130°С. Количества подаваемых азотной кислоты и аммиака регули- руют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток кислоты (2-5 г/л), обеспечивающий полноту поглощения аммиака.



В нижней части аппарата происходит реакция нейтрализации при температуре 155-170°С; при этом получается концентрированный раствор, содержащий 91-92% NH 4 NO 3 . В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров азотной кислоты. Часть теплоты сокового пара используется на подогрев азотной кислоты. Затем соковый пар направляют на очистку и выбрасывают в атмосферу.

Рис.8.8.Схема агрегата аммиачной селитры АС-72:

1 – подогреватель кислоты; 2 – подогреватель аммиака; 3 –аппараты ИТН; 4 – донейтрализатор; 5 –выпарной аппарат; 6 – напорный бак; 7,8 – грануляторы; 9,23 – вентиляторы; 10 – промывной скруббер; 11 – барабан; 12,14 – транспортеры; 13 –элеватор; 15 – аппарат кипящего слоя; 16 –грануляционная башня; 17 – сборник; 18, 20 – насосы; 19 – бак для плава; 21 –фильтр для плава; 22 – подогреватель воздуха.

Кислый раствор аммиачной селитры направляют в донейтрализатор 4; куда поступает аммиак, необходимый для взаимодействия с оставшейся азотной кислотой. Затем раствор подают в выпарной аппарат 5. Полученный плав, содержащий 99,7-99,8% селитры, при 175°С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16.

В верхней части башни расположены грануляторы 7 и 8, в нижнюю часть которых подают воздух, охлаждающий падающие сверху капли селитры. Во время падения капель селитры с высоты 50-55 м при обтекании их потоком воздуха образуются гранулы удобрения. Температура гранул на выходе из башни равна 90-110°С; горячие гранулы охлаждают в аппарате кипящего слоя 15. Это прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подают воздух; при этом создается псевдоожиженный слой гранул селитры, поступающих по транспортеру из грануляционной башни. Воздух после охлаждения попадает в грануляционную башню. Гранулы аммиачной селитры транспортером 14 подают на обработку поверхностно-активными веществами во вращающийся барабан. Затем готовое удобрение транспортером 12 направляют на упаковку.



Воздух, выходящий из грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержат непрореагировавший аммиак и азотную кислоту, а также частицы унесенной аммиачной селитры.

Для очистки этих потоков в верхней части грануляционной башни расположены шесть параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20-30%-ным раствором аммиачной селитры, которая подается насосом 18 из сборника 17. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к раствору селитры, и, следовательно, используется для выработкой продукции. Очищенный воздух отсасывается из грануляционной башни вентилятором 9 и выбрасывается в атмосферу.

Производство карбамида

Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большей устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т. е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрение, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для получения пластмасс, клеев, лаков и покрытий. Карбамид CO(NH 2) 2 - белое кристаллическое вещество, содержащее 46,6% азота. Его получение основано на реакции взаимодействия аммиака с диоксидом углерода:

2NH 3 + CO 2 ↔ CO(NH 2) 2 + H 2 O; ΔН = -110.1 кДж (1)

Таким образом, сырьем для производства карбамида служат аммиак и диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака. Реакция (I) - суммарная; она протекает в две стадии. На первой стадии происходит синтез карбамата:

2NH 3 (г) + CO2(г) ↔ NH 2 СООNH 4 (ж); ΔН = –125,6кДж (2)

На второй стадии протекает эндотермический процесс отщепления воды от молекул карбамата, в результате которого и происходит образование карбамида:

NH 2 СООNH 4 (ж) ↔ CO(NH 2) 2 (ж) + H2O (ж) ; ΔН =15,5кДж (3) Реакция образования карбамата аммония - обратимая экзотермическая реакция, протекающая с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того чтобы процесс протекал с достаточно высокой скоростью, необходимы повышенные температуры. Повышение давления компенсирует отрицательное влияние высоких температур на смещение равновесия реакции в обратную сторону. На практике синтез карбамида проводят при температурах 150-190°С и давлении 15-20 МПа. В этих условиях реакция протекает с высокой скоростью и практически до конца. Разложение карбамата аммония - обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температурах не ниже 98°С [эвтектическая точка для системы CO(NH 2) 2 - NH 2 COONH 4 ]. Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамата в карбамид достигается при 220°С. Для смещения равновесия этой реакции вводят также избыток аммиака, который, связывая реакционную воду, удаляет ее из сферы реакции. Однако добиться полного превращения карбамата в карбамид все же не удается. Реакционная смесь помимо продуктов реакции (карбамида и воды) содержит также карбамат аммония и продукты его разложения - аммиак и СО 2 .

Для полного использования исходного сырья необходимо либо предусмотреть возвращение непрореагировавших аммиака и диоксида углерода, а также углеаммонийных солей (промежуточных продуктов реакции) в колонну синтеза, т. е. создание рецикла, либо отделение карбамида от реакционной смеси и направление оставшихся реагентов на другие производства, например на производство аммиачной селитры, т.е. проведение процесса по открытой схеме.

В последнем случае плав, выходящий из колонны синтеза, дросселируют до атмосферного давления; равновесие реакции (2) при температурах 140-150°С практически полностью смещается влево и весь оставшийся карбамат разлагается. В жидкой фазе остается водный раствор карбамида, который упаривают и направляют на грануляцию. Рецикл образовавшихся газообразных аммиака и диоксида углерода в колонну синтеза потребовал бы их сжатия в компрессоре до давления синтеза карбамида. Это сопряжено с техническими трудностями, связанными с возможностью образования карбамата при низких температурах и высоком давлении уже в компрессоре и забивки машин и тру- бопроводов твердыми частицами.

Поэтому в закрытых схемах (схемах с рециркуляцией) обычно применяют только жидкостной рецикл. Существует ряд технологических схем с жидкостным рециклом. К числу наиболее прогрессивных принадлежат так называемые схемы с полным жидкостным рециклом и с применением стриппинг-процесса. Стриппинг (отдувка) заключается в том, что разложение карбамата аммония в плаве после колонны синтеза ведут при давлении, близком к давлению на стадии синтеза, продувкой плава сжатым СО 2 или сжатым аммиаком. В этих условиях диссоциация карбамата аммония происходит за счет того, что при продувке плава диоксидом углерода резко снижается парциальное давление аммиака и происходит смещение равновесия реакции (2) влево. Такой процесс отличается использованием теплоты реакции образования карбамата и более низким расходом энергии.

На рис.8.9. приведена упрощенная схема крупнотоннажного агрегата синтеза карбамида с жидкостным рециклом и применением стриппинг-процесса. В ней можно выделить узел высокого давления, узел низкого давления и систему грануляции. Водный раствор карбамата аммония и углеаммонийных солей, а также аммиак и диоксид углерода поступают в нижнюю часть колонны синтеза 1 из конденсатора высокого давления 4. В колонне синтеза при температуре 170-190°С и давлении 13-15 МПа заканчивается образование карбамата и протекает реакция синтеза карбамида. Расход реагентов подбирают таким образом, чтобы в реакторе молярное отношение NH 3: СО 2 составляло 2,8-2,9. Жидкая реакционная смесь (плав) из колонны синтеза карбамида поступает в отдувочную колонну 5, где стекает по трубкам вниз. Противотоком к плаву подают сжатый в компрессоре до давления 13- 15 МПа диоксид углерода, к которому для образования пассивирующей пленки и уменьшения коррозии оборудования добавлен воздух в количестве, обеспечивающем в смеси концентрацию кислорода 0,5-0,8%. Отдувочная колонна обогревается водяным паром. Парогазовая смесь из колонны 5, содержащая свежий диоксид углерода, поступает в конденсатор высокого давления 4. В него же вводят жидкий аммиак. Он одновременно служит рабочим потоком в инжекторе 3, подающем в конденсатор раствор углеаммонийных солей из скруббера 2 и при необходимости часть

Рис.8.9. Упрощенная технологическая схема получения карбамида с полным жидкостным рециклом и применением процесса стриппинга:

1 – колонна синтеза карбамида; 2 – скруббер высокого давления; 3 –инжектор; 4 – карбаматный конденсатор высокоого давления; 5 –отдувочная колонна; 6 – насосы; 7 –конденсатор низкого давления; 8 – ректификационная колонна низкого давления; 9 –подогреватель; 10 – сборник; 11 –выпарной аппарат; 12 – грануляционная башня.

плава из колонны синтеза. В конденсаторе образуется карбамат. Выделяющуюся при реакции теплоту используют для получения водяного пара.

Из верхней части колонны синтеза непрерывно выходят непрореагировавшие газы, поступающие в скруббер высокого давления 2, в котором большая часть их конденсируется за счет водного охлаждения, образуя водный раствор карбамата и углеаммонийных солей. Водный раствор карбамида, выходящий из отдувочной колонны 5, содержит 4-5% карбамата. Для окончательного его разложения раствор дросселируют до давления 0,3-0,6 МПа и затем направляют в верхнюю часть ректификационной колонны 8. Жидкая фаза стекает в колонне вниз по насадке противотоком к парогазовой смеси, поднимающейся снизу вверх; из верхней части колонны выходят NH 3 , CO 2 и водяные пары. Водяные пары конденсируются в конденсаторе низкого давления 7, при этом растворяется основная часть аммиака и диоксида углерода. Полученный раствор направляют в скруббер 2. Окончательная очистка газов, выбрасываемых в атмосферу, производится абсорбционными методами (на схеме не показана).

70%-ный водный раствор карбамида, выходящий из нижней части ректификационной колонны 8, отделяют от парогазовой смеси и направляют после снижения давления до атмосферного сначала на выпарку, а затем на грануляцию. Перед распылением плава в грануляционной башне 12 к нему добавляют кондиционирующие добавки, например мочевиноформальдегидную смолу, чтобы получить неслеживающееся удобрение, не портящееся при хранении.

Принципиальная схема с полным рециклом

← Вернуться

×
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:
Я уже подписан на сообщество «rmgvozdi.ru»